Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11874271)
Received Date:16 January 2021
Accepted Date:26 April 2021
Available Online:07 June 2021
Published Online:20 September 2021
Abstract:Twisted bilayer graphene (TBG) is a two-dimensional material composed of two layers stacked at a certain angle. When the twisted angle decreases, the lattice mismatch between two layers produces moiré pattern at a long wavelength which significantly modifies the low-energy band structure. In particular, when the twisted angle is close to the so-called “magic angle”, two moiré flat bands are formed near a charge neutral point due to the strong interlayer coupling. These flat bands with high density of states are essential in realizing superconductivity and correlated insulating states. More recently, the magic angle TBG combining an hBN system has exhibited spin-valley polarization when 3/4 of flat bands are filled, thereby providing an ideal platform to achieve quantum anomalous Hall states. Whether it is TBG system or TBG-hBN system, the flat band becomes a crucial condition for discovering so rich physical connotations. Besides the twisted angle, the strain gives an alternative way to modulate flat bands. It has been reported that applying heterostrain in magic angle TBG can makes flat moiré band tunable; strain can also generate flat bands in non-magic angle TBG. Moreover, the reconstruction of TBG due to the strain gives rise to a serial of novel physical phenomena such as topological protected soliton and photonic crystal. Another reason for studying strain effect is that the strain is ubiquitous in the fabrication progress. The strain can also be controlled via piezoelectric substrate which makes possible the in situ modulation of correlated states, topology and quantum effect. Our work is to study the heterostrain effect in TBG band structure and optical conductivity by using a continuum model. Although the resulting conduction band and valence bands keep connected through Dirac points protected by the C2 symmetry, their separation increases significantly when heterostrain is applied while the Dirac point is also shifted. The optical conductivity is characterized by a series of peaks associated with van Hove singularities, and the peak energies are systematically shifted with the strain amplitude. These changes show that the heterostrain exerts a great influence on electron property of TBG. Keywords:twisted bilayer graphene/ heterostrain/ optical conductivity
3.理论结果与讨论图2(a)展示了TBG在未考虑应变时的第一莫尔布里渊区示意图, 由于施加的应变幅度较小, 在应变下的第一莫尔布里渊区形状相比之前差别并不大. 我们沿着“K1-Γ-K2-M2-Γ-M1-K1”的路径绘制了转角为1.05°和1.47°时TBG在不同应变下的能带(图3). 可见在转角为1.05°且未施加应变时, 零能附近形成了两条平带(图3(a)), 带宽约为17 meV, 在施加应变后(图3(b)和图3(c)), 两条平带间隔增大, 变化量与施加的应变大小成正比; 其他位置处能带之间的间距也随着施加应变的增加而增大. 同样对于转角为1.47°的能带(图3(d)—(f)), 除了本身未形成平带之外, 应变带来的影响与1.05°时几乎相同. 值得一提的是, 对于魔角1.05°的TBG, 其莫尔能带在应变的作用下依然保持平带的特征, 这为平带的调控提供了额外的思路. 另外, 单轴应变的施加并未打破TBG的二重旋转与时间反演(C2Γ )对称性, 这使连接导带和价带的两个狄拉克点依然存在, 但TBG的面内镜面对称性受到破坏[19,20], 狄拉克点的位置将发生偏移, 偏移的大小与施加的应变有关, 图2(b)展示了转角为1.05°、应变大小为6%时狄拉克点附近的能带, 所沿路径为图2(a)中的虚线, 此时狄拉克点位置由虚线路径中的黑点标注. 图 2 (a) TBG莫尔布里渊区示意图: 两个大正六边形代表上下两层单层石墨烯的第一布里渊区, 小正六边形为转角形成的莫尔布里渊区; (b) 偏移后的狄拉克点附近能带: 红色和蓝色曲线分别代表图(a)中莫尔布里渊区同色虚线路径的能带, 虚线路径中的黑点代表狄拉克点的位置 Figure2. (a) Schematic of TBG moiré Brillouin zone: The two large regular hexagons represent the first Brillouin zone of the upper and lower graphene layers, the small regular hexagons refer to the moiré Brillouin zone. (b) The band structures near the shifted Dirac points: Red and blue curve lines represent the band structures follow the same colored dashed lines path in the panel (a) respectively, the Dirac points are marked by the black dots in dash lines.
图 3 TBG的能带 (a)—(c) TBG在转角为1.05°, 应变大小分别为0%, 3%和6%时的能带; (d)—(f) TBG在转角为1.47°, 应变大小分别为0%, 3%和6%时的能带 Figure3. Band structures of TBG: (a)?(c) The band structures with 0%, 0.3%, 0.6% uniaxial heterostrain at twisted angle θ = 1.05°, respectively; (d)?(f) the band structures with 0%, 0.3%, 0.6% uniaxial heterostrain of at twisted angle θ = 1.47°, respectively.
图4展示了转角为1.05o的TBG在施加0.6%应变后的能带(图4(a))、态密度(图4(b))以及低温下的光电导率(图4(c)), 目的是为了分析能带、态密度与光电导率的对应关系. 态密度是单位能量中态的个数, 即能带越平, 态密度越大, 如图4(a)能带中的两个莫尔平带贡献了态密度(图4(b))中最大的两个范霍夫奇点, 其他能带的鞍点也对应于态密度的小峰值. 本文所计算的光电导率源于费米面附近的带内跃迁以及导带与价带的带间跃迁(直接跃迁), 带内跃迁只主导零能附近的光电导率, 因此对光电导率其他非零处吸收峰的贡献均来自具有相同动量的两个态之间的带间跃迁, 也就是说影响非零能处光电导率的因素有两个: 1) 相同动量处基态与激发态的态密度; 2) 跃迁概率. 图4(c)用绿色、红色与蓝色箭头分别表示光电导率的3个主特征峰, 对应于图4(a)中同色箭头所代表的带间跃迁, 其他未标注的吸收峰同样也来自不同能带之间的带间跃迁: 图4(c)中红色箭头表示的特征峰对应于莫尔价带对第一非莫尔导带之间的跃迁, 贡献了光电导率中最大的峰值; 蓝色箭头则对应跃迁能量在200 meV之上最显著的吸收峰; 绿色箭头表示的特征峰以及其附近的小峰均源于两个莫尔能带之间的跃迁, 而这两个能带在相同动量处的态密度极大, 却并未贡献出最大的吸收峰, 这是因为两个莫尔能带之间的跃迁概率是很小的. 特别地, 当哈密顿量((1)式)具有电子空穴对称性时, 价带与相对应的导带之间的带间跃迁概率为零[18], 比如两个莫尔能带的M点之间并不能发生带间跃迁. 图 4 TBG在转角为1.05°、施加0.6%大小的应变时的能带(a)、态密度(b)以及光电导(c), 图(c)中绿色、红色与蓝色箭头对应的吸收峰分别对应于图(a)中的同色箭头代表的带间跃迁 Figure4. (a) Band structure, (b) density of states and (c) corresponding optical conductivity of TBG with 0.6% uniaxial heterostrain at 1.05°. The green, red and blue arrows in panel (c) correspond to the interband transition marked with arrows of the same color in panel (a).
为了探究应变对于TBG光学性质的影响, 比较了TBG在不同应变下的态密度(图5)以及光电导率实部(图6), 两个图中的曲线从下到上分别代表施加的应变幅度为0%, 3%, 6%. 在两个转角下, 态密度极值峰的半高全宽随着应变的增大而逐渐增大(图5), 对应于能带带宽的增大, 同时也伴随着态密度峰值大小的减小—这些变化将使光学吸收峰变得扁平(图6). 从图6可见, TBG光电导率的峰值集中在跃迁能量600 meV以内, 而在大于600 meV的区域, 光电导值约为2倍σmono. 转角为1.05°时的主峰位于86 meV能量处, 1.47°时的主峰位于188 meV能量处, 在应变作用下, 这两个峰的能量位置变化不大, 峰型变得扁平. 其他位置的光电导率特征峰在施加应变后一部分发生合并, 一部分发生劈裂, 如图6(a)的①区域中原本处于能量259 和302 meV处的两个峰在施加应变后合并成了在270 meV处的单峰(在1.47°时也有类似的现象), 这些变化均源于能带在应变下的改变, 而从态密度中可以更加直观地展现这些变化: 峰的合并源于态密度在施加应变后峰型变得扁平, 如图5(a)的①区域, 该区域所代表的能带与第一非莫尔价带跃迁贡献出图6(a)中的特征峰值; 峰的劈裂在1.47°时尤其突出, 如图5(b)中的②区域, 其态密度自下而上从未施加应变时的“尖锐边缘型”劈裂为施加应变后的“阶梯型”, 而由此区域能带与莫尔价带之间的跃迁贡献了图6(b)中的光电导率特征峰, 所以光电导率的特征峰也由“边缘型”转变为“阶梯型”. 对于1.05°的TBG, 原本未施加应变时零能处的单个范霍夫奇点在应变下产生劈裂(图5(a)), 莫尔能带在应变下分离(图3), 这种结果将导致电子的关联效应减弱, 不利于实验对电子强关联性质的研究; 而伴随着单个范霍夫奇点的劈裂, 1.05o下零能处的Drude峰(图6(a)中黑色曲线的零点峰)也一并消失, 此时光学吸收谱只包含带间跃迁的贡献, 这一效应在之前扫描隧道显微镜的实验[14]中得到证实. 图 5 TBG的态密度 (a) TBG在转角为1.05°, 应变大小分别为0% (黑色), 0.3% (蓝色), 0.6% (红色)时的态密度; (b) TBG在转角为1.47°, 应变大小分别为0% (黑色), 0.3% (蓝色), 0.6% (红色)时的态密度; 蓝色虚线表示正文中所讨论的①, ②区域的边界 Figure5. (a) Density of states (DOS) of TBG with 0% (black curve), 0.3% (blue curve) and 0.6% (red curve) uniaxial heterostrain at 1.05°; (b) DOS of TBG with 0% (black curve), 0.3% (blue curve) and 0.6% (red curve) uniaxial heterostrain at 1.47°. Blue dash lines in panel (a) and (b) represent the boundary of ①, ② region, respectively.
图 6 TBG的光电导 (a) TBG在转角为1.05°, 应变大小分别为0% (黑色), 0.3% (蓝色), 0.6% (红色)时的光电导; (b) TBG在转角为1.47°, 应变大小分别为0% (黑色), 0.3% (蓝色), 0.6% (红色)时的光电导; 蓝色虚线表示正文中所讨论的①, ②区域的边界 Figure6. (a) Optical conductivity of TBG with 0% (black curve), 0.3% (blue curve) and 0.6% (red curve) uniaxial heterostrain at 1.05°; (b) optical conductivity of TBG with 0% (black curve), 0.3% (blue curve) and 0.6% (red curve) uniaxial heterostrain at 1.47°. Blue dash lines in panel (a) and (b) represent the boundary of ①, ② region, respectively.