Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Fund Project:Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2015A030311018, 2017A030313035) and the Science and Technology Program of Guangzhou, China (Grant No. 2019050001)
Received Date:07 February 2021
Accepted Date:30 April 2021
Available Online:07 June 2021
Published Online:20 September 2021
Abstract:Optical nonlinear effect plays an important role in optical communication, optical detection, quantum information and other areas. However, it is constrained by the weakness of the nonlinear optical response of the common materials. The enhancement of the optical nonlinear response on a nanoscale becomes a critical challenge. Over the years, several ways to enhance the optical nonlinear effects have been suggested. In fact, these technologies can slightly enhance the optical nonlinear response. Recently, some research groups focused on the materials with vanished permittivity, which is called epsilon-near-zero (ENZ) material, showing that it can exhibit large optical nonlinearity due to the field enhancement in the material of this type. However, the ENZ material only holds a large optical nonlinear response in a limited spectral range. In order to overcome this limitation, here in this paper we report the ENZ mode which is excited by the ITO film and strongly coupled to the gap surface plasmons excited by the metal-dielectric-metal structure. To acquire the nonlinear refractive index n2, we first calculate the ITO permittivity through the Drude-Lorentz model and find the wavelength of the ENZ material. Then we calculate the time-dependent electron temperature and lattice temperature of ITO by the two-temperature model. According to the elevated electron temperature, we can calculate the plasma frequency ${\omega _{\rm p}}$, and by taking it into the Drude-Lorentz model, we can obtain a new permittivity of ITO compared with the initial one. Finally, we can calculate the variation of the refractive index $ \Delta n $, and the nonlinear refractive index $ {n_2} = \Delta n/{I_0} $. In this paper, our coupled structure exhibits a broadband (~1000 nm bandwidth) enhancement of the nonlinear optical effect in the near-infrared spectrum, a maximum nonlinear refractive index n2 as large as 3.02 cm2·GW–1, which is nearly 3 orders larger than the previously reported nonlinear refractive index of bare ITO film. As a result, it is possible to realize a dramatically large variation of nonlinear refractive index under a low-power optical field. It is expected to be used in the nano photonic devices such as optical storage, all-optical switches, etc. Keywords:epsilon-near-zero material/ strong coupling/ nonlinear optics
全文HTML
--> --> --> -->
2.1.结构设计
图1(a)为激发间隙表面等离激元共振的结构, 由周期性银圆盘、用于激发ENZ模式的ITO纳米薄膜、二氧化硅电解质间隔层和光学厚度的银层构成. 其中, 结构的晶格常数为a, 银圆盘半径为r, 厚度为h1, ITO薄膜厚度为h2, 二氧化硅厚度为h3, 银层厚度为h4, 如图1(b)所示. 通过改变圆盘的半径r, 可以调节间隙表面等离激元的共振位置, 使其可以扫过ENZ共振波长, 当模式匹配时可实现ENZ模式与间隙表面等离激元的强耦合. 同时可以通过改变圆盘半径来控制ENZ模式与间隙表面等离激元之间的失谐情况. 图 1 器件结构设计图, 包含银圆盘、ITO材料层、二氧化硅介质层、银膜层以及硅基底(未画出) (a)三维结构图; (b)平面结构图及对应参数的示意图 Figure1. Design of the device, including the silver disc, the ITO material layer, the SiO2 dielectric spacer layer, the silver film layer, and the silicon substrate (not drawn in the figure): (a) Three-dimensional structure; (b) the planar graph and parameter of the structure.
本文设计的器件结构如图1(a)所示, 其中, 选用晶格常数a为800 nm, 银圆盘厚度h1 = 60 nm, ITO的ENZ纳米薄膜厚度h2 = 20 nm, 二氧化硅介质层厚度h3 = 30 nm, 以及h4 = 100 nm厚的银层. 通过有限时域差分(FDTD)法进行计算, 银圆盘、二氧化硅以及银层材料的折射率通过查阅文献[26]而得, 以平面波作为激励源时, 通过周期性边界条件, 可以扫描计算出耦合结构的反射率随银圆盘半径的变化关系, 如图3(a)和图3(b)所示, 将耦合系统的光谱与仅激发间隙表面等离激元共振的参考样品进行比较, 参考样品除了不包含ITO薄膜外, 所有其他参数保持相同. 由图3(a)可知, 间隙表面等离激元共振位置随圆盘半径增加而发生红移, 且在半径约为160 nm处, 共振位置扫过ITO材料介电常数近零的波段. 与其对比, 从图3(b)可以看出, 加入ITO薄膜后, 耦合系统的光谱发生了明显的变化, 当圆盘半径从80—280 nm范围内进行调节时, 可以观察到谱线表现出清晰的反交叉现象, 这是由于ENZ模式与间隙表面等离激元共振模式发生强耦合引起的劈裂现象. 根据耦合谐振波振荡器模型理论, 由ENZ模式色散关系和间隙表面等离激元色散关系, 可求出耦合系统色散曲线, 如图3(c)所示. 在该色散曲线中, 可以作进一步的分析, 当圆盘半径r = 157 nm时, 可观察到2${\varOmega _{\mathrm{R}}}$ = 569 nm的最小劈裂, 在此位置两个共振位置在波长为1415 nm附近对称, 也就是说该位置为ENZ模式与间隙表面等离激元共振模式的零失谐位置. 此时拉比劈裂值达到20.11%. 图 3 FDTD模拟扫描计算得到的耦合结构的反射率随银圆盘半径的变化 (a)无ITO材料层; (b)有ITO材料层; (c)由单独ENZ模式与单独间隙表面等离激元的色散曲线(红色点划线)得到的强耦合作用产生的上支和下支色散曲线(黑色实线) Figure3. Reflectance of the coupled structure vs. the radius of the silver disc by using FDTD solutions: (a) Without ITO material layer; (b) with ITO material layer; (c) theoretical dispersion curves of coupled upper branch and lower branch (black solid lines) resulting from strong coupling obtained by the bare ENZ mode and GPP dispersion curves (red dot dash lines).
23.2.强耦合系统的电磁场分布模拟 -->
3.2.强耦合系统的电磁场分布模拟
对于强耦合系统, 在零失谐位置两种模式不能独立开来, 也就是说在该位置表现为一种混合模式, 而当处于失谐状态时两种模式则会恢复, 并能区分开来. 为了研究强耦合系统引起的场分布规律, 选取图3(b)中上下分支上a—f六个点, 其圆盘半径依次为100 nm, 160 nm以及240 nm, 此时分别对应于负失谐、零失谐和正失谐位置, 使用FDTD可模拟它们的光学模式和电磁场分布, 如图4所示. 图 4 ITO中激发的ENZ模式与间隙表面等离极化激元强耦合的电磁场分布图 (a)?(d)负失谐; (e)?(h)零失谐; (i)?(l)正失谐 Figure4. Electric and magnetic field distribution of the strong coupling between the ENZ mode that excited in the ITO film and the GPP: (a)?(d) Negative detuning; (e)?(h) zero detuning; (i)?(l) positive detuning.
图5(a)为耦合结构在低功率激光照射(线性光学)条件下的反射谱, 可以看出, ENZ模式与间隙表面等离激元耦合后产生劈裂, 形成两个共振谷, 其中一个是在λ = 1180 nm处的主共振, 另一个是在λ = 1750 nm处的弱共振, 对应于图4(e)—(h)的电磁场分布. 此时两个共振位置之间相隔约570 nm, 这对于宽带光学非线性增强带来了强有力的优势. 图 5 (a)耦合结构的反射谱; (b)?(d)主共振位置(1180 nm)处总电场、电场x分量以及z分量分布 Figure5. (a) Reflectance spectrum of the coupled structure; (b)?(d) the total electric field, the x-component, the z-component distribution at the main resonance (1180 nm) respectively.
下面将选用脉冲宽度为150 fs, 入射光功率为$ I_0 = 0.15 $ GW/cm2的激光进行模拟计算. 由图5(b)可知, 对于本文选用的耦合结构, 电场可以局域在ITO结构内部, 从而实现场增强效应. 对比图5(c)与图5(d)可知, ITO薄膜中的电场增强主要存在于z方向上. 根据场增强情况, 计算在ITO薄膜中入射光功率的增强倍数, 并将其代入双温模型中, 可计算出电子温度的变化规律, 如图6(a)所示. 此时电子温度迅速升高, 据此可以求得ITO薄膜在电子温度升高时的等离子体频率, 将其代入Drude-Lorentz模型中可求得非线性条件下ITO薄膜的介电常数变化规律. 图 6 (a)通过双温模型计算得到的电子温度Te(t)和晶格温度Tl(t); (b)非线性折射率n2, 黑线为文中结构的非线性折射率, 红点为文献[15]报道的单层ITO薄膜的n2值乘以200倍, 蓝色点线为文献[15]单层ITO薄膜结构通过双温模型理论计算得到的n2值乘以200倍 Figure6. (a) Calculated electron temperature and lattice temperature through the two-temperature model; (b) nonlinear refractive index n2, where the black line represents the n2 of the coupled structure, the red dots represent 200 times of the n2 of bare ITO film reported in Ref. [15], the blue dot line represents 200 times of the calculated theoretical value of n2 of bare ITO film reported in Ref. [15] by two-temperature model.