Institute of Instrument and Electronics, North University of China, Taiyuan 030051, China Key Laboratory of Instrument Science and Dynamic Testing, Ministry of Education, North University of China, Taiyuan 030051, China Key Lab of Quantum Sensing and Precision Measurement, Shanxi Province, North University of China, Taiyuan 030051, China
Fund Project:Project supported by the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Foundation of China (Grant Nos. 51727808, 61727804), the National Natural Science Foundation of China (Grant Nos. 51635011, 51922009), the Research Foundation for Basic Research of Shanxi Province, China (Grant Nos. 201901D111011(ZD), 201901D211254, 201801D221202, 201801D221213), the Key Research and Development Foundation of Shanxi Province, China (Grant No. 201803D121067), the Science and Technology Innovation Project of the Higher Education of Shanxi Province, China (Grant No. 2019L0558), the Key Laboratory of Shanxi Province, China (Grant No. 201905D121001), and the Fund for Shanxi “1331 Project” Key Subjects Construction, China
Received Date:20 January 2021
Accepted Date:08 March 2021
Available Online:14 July 2021
Published Online:20 July 2021
Abstract:The high-sensitivity magnetic sensor is the key to the weak magnetic and extremely weak magnetic detection imaging. In this paper, based on ensemble nitrogen-vacancy (NV) color center in diamond, a wide-field magnetic field distribution imaging system combined with the magnetic flux concentrator (MFC) is built for enhancing the magnetic detection. The paired T-shape chip MFC structures are designed and prepared based on the simulation of magnetic flux concentration effect, and the enhancement of magnetic field of MFC is verified by continuous wave optical detection magnetic resonance (CW-ODMR) imaging technology. When the gap width between the MFCs is 1.0 mm, the magnetic enhancement factor is about 10.35. To verify the effectiveness of the magnetic enhancement effect of the MFC, The magnetic enhancement effects are also measured under different magnetic field strengths and different gap widths. The magnetic sensitivity of the system increases from 1.10 nT/Hz1/2 to 0.30 nT/Hz1/2. By comparing the simulations with the measurements, the relationship between the measured magnetic enhancement multiple and the gap width can be obtained, and the better magnetic enhancement capability and sensitivity of the experimental system are also estimated. When the MFC’s gap width is 0.5 mm, the corresponding magnetic enhancement factor is increased to 18.21, and the corresponding magnetic sensitivity is 0.25 nT/Hz1/2. These results show that the magnetic detection sensitivity of the ensemble NV in diamond can be effectively improved based on magnetic flux concentration effect, which provides a reference for the applications of precision quantum measurement technology in weak magnetic and extremely weak magnetic detection. Keywords:magnetic flux concentrator/ ensemble NV color center in diamond/ continuous wave optical detection magnetic resonance/ magnetic sensitivity
如图1(a)的能级图所示, 金刚石NV色心在受到532 nm绿色激光照射时, 其能级由基态3A2激发到第一激发态3E, 同时也在发生退激发回到基态, 退激发时有两种途径, 其中无辐射的系统间交叉(inter-system crossing, ISC)过程经过中间态1A1和1E的过程占比与微波频率有关, 在电子自旋与微波频率共振时荧光强度最弱; 在外磁场条件为零时, ODMR曲线仅在微波共振频率ν0 = 2.87 GHz附近呈现一个分裂的谐振峰. 以NV晶轴为坐标系的z方向, 并适当地选取x和y方向, 则N-V色心基态电子自旋的哈密顿量可以表示为[20] 图 1 (a)金刚石NV色心能级跃迁示意图; (b)沿(100)面生长的金刚石晶胞中一种NV轴朝向与磁场方向夹角示意图; (c) T型薄片状MFC及调节装置示意图; (d) MFC间距为0.5 mm的两永磁体间磁场仿真流线图; (e)无MFC的两永磁体间磁场仿真流线图 Figure1. (a) Related energy levels of NV color center in diamond; (b) schematic diagram of the angle between the direction of the magnetic field and the direction of the NV axis in the diamond cell grown along the (100) plane; (c) schematic diagram of the T-shaped flake MFC and adjusting system; (d) simulation of magnetic field streamline diagram with MFC gap width of 0.5 mm between two permanent magnets; (e) simulation of magnetic field streamline diagram without MFC between two permanent magnets
图2(a)所示为实验装置系统, 由光路系统、宽场显微镜系统、微波系统、磁场系统、同步控制系统和数据处理系统组成. 高浓度的NV色心系综样品为1.0 mm × 4.0 mm × 0.5 mm的长条形金刚石(色心浓度约3 ppm, Element six, (100)为金刚石生长晶面), 而根据晶胞建立的坐标系由于沿着金刚石生长面与切削面, 因而在宏观上表现为图1(c)所示的以金刚石中心点为原点, Y轴方向为施加待测磁场与MFC的方向. 图 2 (a) 实验装置示意图; (b) 用于仿真的几何结构俯视图, 红框为MFC间距0.5 mm时间隙部分放大示意图, 黑框为视场内的仿真磁场分布图 Figure2. (a) Schematic diagram of experimental setup; (b) top view of the geometric structure used in simulation, the red frame is the enlarged schematic diagram of the gap part when the MFC gap width is 0.5 mm, and the black frame is the simulated magnetic field distribution in the field of view.
光路系统将激光器(MGL-III-532-100 mW, 长春新产业光电技术) 产生的532 nm绿色激光经过准直与扩大后射入宽场显微镜系统; 宽场显微镜系统将通过扩束透镜扩大后的激光通过二向色镜经由20 ×/0.4的物镜汇聚到金刚石下表面NV色心富集层上. 相机成像区域为该样品中心位置处约0.48 mm × 0.27 mm区域, 通过调节金刚石位置可将视场边界较宽的一侧与坐标轴Y轴方向平行, 较窄一侧与X轴平行. 金刚石上方物镜将532 nm激光作用于NV色心表面, 其有效光斑直径为0.6 mm, 可完全覆盖成像区域. NV色心发出的红色荧光由物镜收集后经分束镜, 一束进入到相机(CS2100M-USB, Thorlabs)进行成像, 另一束收集至光电探测器上用于相关参数对比校正. 扫频微波由微波源(SMA 100A, ROHDE &SCHWARZ, 输出功率为30 dBm)通过微波天线向成像测量区域提供, 频率范围为2.7—3.0 GHz, 步进为0.15 MHz. 待测磁场由成对圆柱状(Φ40 × 10 mm)永磁体结合精密调节架提供, 构成类亥姆霍兹的磁调节系统, 两永磁体轴线正中心为测量位置, 磁体间距约为200 mm时, 利用高斯计测量中心位置处的磁场强度约为5 Gs, 此外还可通过加减永磁铁或改变磁铁间距改变中心位置处磁场强度. 同步控制系统通过控制板卡(PulseBlasterESR-PRO, SpinCore)将微波扫频步进与相机曝光和图像储存时间根据序列进行循环同步, 相机曝光时间设置为5 ms, 在图像储存开始的同时, 对微波源提供一个同步的步进触发信号, 单次循环储存时间为35 ms, 相机每秒采集帧数为25 FPS, 单次2000个循环的完整ODMR成像数据采集时间为80 s. 为了提升测量数据的准确性, 单组数据进行5次测量平均. 数据处理系统将相机保存的图片数据根据采集时间逐张提取并保存为一个1920 × 1080 × 2000的三维矩阵, 然后这个三维矩阵经过4 × 4个像素点平均为一个像素点后将每个图像像素点处的数值随时间变化的曲线单独保存, 对应的系统分辨率约为1 μm/pixel, 获得的曲线为对应像素位置成像需要的ODMR曲线, 如图3(c)中的蓝色实线所示, 通过MATLAB算法, 利用双峰Lorentz公式进行最小二乘法拟合: 图 3 (a) 测量得到的1.0 mm间距MFC的测量位置磁场分布图(左)与同样位置处无MFC磁场分布图(右), 单位Gs; (b)仿真得到的图(a)的两个对应图; (c)三种状态的ODMR曲线, 只有背景磁场(黑线)、有待测磁场无MFC(橙线)、有间距1.0 mm 的MFC (蓝线); (d) MFC间距1.0 mm时改变待测磁场强度得到的增强磁场与基准磁场关系 Figure3. (a) Simulated magnetic field distribution diagram of the MFCs with a 1.0 mm gap (left) and without MFCs at the same position (right); (b) corresponding photos of panel (a) obtained by measurement; (c) ODMR curves under three conditions: only background magnetic field (black line), magnetic field without MFC (orange line), magnetic field with MFC of 1.0 mm gap (blue line); (d) relationship between the enhanced magnetic field and the reference magnetic field obtained by changing the intensity of the magnetic field to be measured when the MFCs gap is 1.0 mm.
通过对不同间距条件下MFC间隙中心处成像, 可以获得MFC不同间距条件下总体平均ODMR曲线, 如图4(a)所示. 可以看到, 随着MFC间距的增大, ODMR曲线的两个峰值点间距随之减小, 即随着MFC间距的增加, MFC磁增强效果逐渐减弱. 由于系统使用的系综金刚石NV色心样品尺寸的限制, 实验中所测量的MFC最小间距为1.0 mm. 仿真得到的不同间距的磁场增强倍数如图4(b)中蓝圈所示, 而黑色方块为测量得到的磁场增强倍数, 可见测量磁场增强倍数与仿真结果匹配得很好. MFC磁场增强倍数与间距变化的对应关系可表示为[29] 图 4 (a) MFC不同间距下ODMR曲线; (b)仿真(红色圆圈)与测量(黑色方点)得到的不同间距MFC的磁场增强倍数曲线, 蓝线为拟合曲线. Figure4. (a) ODMR curves of MFC with different gap widths; (b) magnetic field enhancement curve of MFC with different gap widths obtained by simulation (red circles) and measurement (black dots). The blue line is the fitting curve.
利用(11)式获得的磁场增强倍数与间距的关系曲线如图4(b)中的蓝线所示. 根据测试结果, 可以预计在MFC间距为0.5 mm (完全满足成像视场范围条件)时, MFC的磁增强倍数N可达18.21. 23.3.磁灵敏度计算及预计 -->
3.3.磁灵敏度计算及预计
将测量得到的不同间距下的放大倍数N, ODMR对比度C与半波全宽ω, 以及通过(7)式计算得到的光子速率R代入(9)式, 可以得到不同间距下对应的系统磁灵敏度, 如图5所示. 可以看出, 随着MFC间距的减小, MFC对中心位置处磁场强度的放大倍数逐渐增大, 磁灵敏度提高, 系统磁灵敏度可由无MFC时的1. 10 nT/Hz1/2提升至MFC间距为1.0 mm时的0.30 nT/Hz1/2. 将测量结果再根据(9)式与(11)式进行拟合, 得到蓝色的拟合曲线, 根据曲线可以估计在间距为0.5 mm时, 对应磁灵敏度能达约0.25 nT/Hz1/2, 可实现磁检测灵敏度的有效提升. 图 5 黑色方点为测量得到的不同间距下的磁灵敏度, 红线为无MFC状态下的磁灵敏度, 蓝线为拟合曲线, 蓝色星形为估计得到的间距为0.5 mm的磁灵敏度 Figure5. The black square points are the measured magnetic sensitivity at different intervals, the red line is the magnetic sensitivity without MFC, the blue line is the fitting curve, and the blue star is the estimated magnetic sensitivity with a pitch of 0.5 mm.