1.Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China 2.College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450001, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 71771013, 71621001), the National Key R&D Program of China (Grant No. 2019YFF0301403), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2019JBM041)
Received Date:10 January 2021
Accepted Date:27 February 2021
Available Online:14 July 2021
Published Online:20 July 2021
Abstract:In our study, the unidirectional pedestrian flow in an L-shaped corridor is taken as the research object, and the pedestrian turning behavior is studied based on controllable experiments and micro simulations. First of all, three experimental scenarios, namely, no obstacles in the turning zone, diagonal layout of obstacles along the turning zone, and diagonal layout of obstacles in the vertical turning zone, are constructed. Behavioral characteristics such as pedestrian movement trajectory and velocity distribution are analyzed through controllable experiments of pedestrians. Then, a velocity correction model based on the Voronoi diagram is constructed, and the turning rules of pedestrians passing through a 90-degree L-shaped curve are embedded in the model. Finally, simulation research is conducted on the scene with both obstacles and asymmetric L-shaped corridors as well as the scene with neither of them to simulate and reproduce the turning behavior of pedestrians, and analyze the distributions of pedestrian velocities and individual densities at different stages. The research shows that when pedestrians move in a normal non-panic status, they rarely present disorderly behavior and always approach to the inside of the corner of the L-shaped corridor. In the turning area, pedestrians always follow their original moving mode to pass through the corner like a stable arc. And in the process of moving, pedestrians do not move in a straight line, but keep shaking back and forth for zipper effect. Besides, in the process of turning, the longer the distance from the center of the corner, the longer the distance of the pedestrian around the arc will be. And the L-shaped corridor can be divided into vertical straight area, transition area, turning area, and horizontal straight area. When pedestrians pass through the turning walking area, the “invisible bottleneck” phenomenon and the “curved triangle idle area” phenomenon can be observed. Besides, the streamline compression and multiple rows of pedestrian track clusters can be seen in the region. According to the characteristics of pedestrians walking through the L-shaped corridor, the turning rules of pedestrians are made, and the scene with both of obstacles and asymmetric L-shaped corridor as well as the scene with neither of them is simulated. Then, through the pedestrian simulation by using our model, the turning behavior of pedestrians passing through curve like a smooth arc can be effectively reproduced. Moreover, the “invisible bottleneck” phenomenon and the “curved triangle idle area” phenomenon in the turning walking area can be seen in the simulation. At the same time, when the pedestrian flow passes through the four areas of the L-shaped corridor successively, the velocity distribution is consistent with the experimental data of the pedestrian, showing an increasing-decreasing-increasing “wavy” change characteristic. The simulation model is also used to simulate the local density change of pedestrians due to the turning behavior, which verifies the unity of pedestrian velocity and local density change. The cognition of invisible bottleneck is helpful in rationally utilizing and designing the L-shaped corridor turning area. Keywords:pedestrian dynamics/ L-shaped corridor/ velocity correction model/ Voronoi diagram/ invisible bottleneck
根据生活常识及相关的行人实验研究, 设置常见的L型通道出入口尺寸, 以满足多名行人(如5人)可并排通过的尺寸需求. 入口处通道宽度${W_1}$为2.6 m, 长度${L_1}$为11.5 m, 长度${L_3}$为8.6 m, 出口处通道宽度${W_2}$为2.9 m, 长度${L_2}$为6.6 m, 如图2所示. 在实验中, 戴红色或黄色帽子的行人数量相同, 各为30名, 所有志愿者均从通道底端A口进入, 以正常速度单向移动, 形成稳定行人流, 经过弯道转弯, 从通道右端B口出去. 在实验过程中, 随着L型通道中人数的变化, 通道中行人整体密度变化为0—1.45 P/m2. 实验根据有无障碍物及障碍物连线与转弯区域对角线的关系分为3个场景, 分别为: 转弯区无障碍物场景1、障碍物沿转弯区对角线布局场景2、障碍物垂直转弯区对角线布局场景3, 分别如图2、图3和图4所示. 志愿者听从工作人员指挥, 在每个场景均行走3次. 图 2 行人在L型通道移动的实验场景1 (a) L型通道设置; (b) 行人实验截图 Figure2. Experimental Scenario 1 of pedestrian movement in an L-shaped corridor: (a) The L-shaped corridor setting; (b) pedestrian experiment screenshot.
图 3 行人在带有障碍物的L型通道移动的实验场景2 (a) L型通道设置; (b)行人实验截图 Figure3. Experimental Scenario 2 of pedestrian movement in an L-shaped corridor with obstacles: (a) The L-shaped corridor setting; (b) pedestrian experiment screenshot.
图 4 行人在带有障碍物的L型通道移动的实验场景3 (a) L型通道设置; (b) 行人实验截图 Figure4. Experimental Scenario 3 of pedestrian movement in an L-shaped corridor with obstacles: (a) The L-shaped corridor setting; (b) pedestrian experiment screenshot.
实验结束后, 通过Petrack软件对实验视频划定观察区域, 使用颜色识别模式追踪行人头部, 识别行人佩戴的红色/黄色帽子, 并克服阴影区域对追踪的影响. 设定视频的起始坐标, 从行人进入L型通道开始, 每隔25帧(0.04 s)根据行人的高度和视角计算获取行人相应的地面位置, 如图5所示. 图 5 通过Petrack软件对行人进行识别追踪 Figure5. The pedestrians are identified and tracked by Petrack software.
1) 实验场景1 在实验场景1中, 选取一组代表性行人移动轨迹进行分析, 如图6所示. 可以观察到, 行人移动过程中会形成4—5列轨迹簇, 行人以近似平滑的弧线轨迹通过L型通道转弯区域. 图 6 行人在场景1无障碍物的L型通道行走的视频截图 Figure6. The video screenshots of pedestrians walking in the L-shaped passage without obstacles in Scene 1.
基于观察区域内所有行人在观察时间内连续移动的地面坐标, 绘制连续的行人移动轨迹线, 可以观察到行人整体通过L型通道时形成了稳定的弧形曲线, 如图7(a)所示. 选取行人在通道入口水平面A不同出发位置有代表性的几条连续行人轨迹线, 可以发现行人在正常非恐慌移动过程中, 很少会出现乱串行为, 基本按照自身的移动轨迹以稳定弧线通过转弯处, 且行人在移动过程中不是以直线移动, 而是不停来回抖动存在拉链效应的侧向位移, 如图7(b)所示. 图 7 行人在场景1无障碍物L型通道的移动轨迹 (a) 原始移动轨迹; (b)简化移动轨迹 Figure7. The paths of pedestrians in the L-shaped corridor without obstacles in Scene 1: (a) The original moving track of the pedestrians in the L-shaped corridor; (b) the simplifying moving track of the pedestrians in the L-shaped corridor.
以图7(b)简化的行人移动轨迹为例进行分析, 可以发现行人在通过L型通道时, L型通道分为直行区域、过渡区域、拐弯区域和直行区域. 其中, ${Z_1}$和${Z_4}$分别为垂直和水平直行区域, 行人基本以既定速度方向直行通过; ${Z_2}$为过渡区域, 行人向弯道内侧靠拢, 且${Z_2}$左侧区域的速度方向调整较大, ${Z_2}$右侧区域的速度方向调整较小; ${Z_3}$为弯道转弯区域, 行人实现转弯, 且行人均不会进入弯道三角形闲置区域${Z_0}$中进行绕远, 如图8(a)所示. 在行人通过转弯区域时, 可以发现, 行人移动轨迹线基本是以弯道处顶点O为圆心的圆弧, 具有相同的圆心角θ. 越外围的行人, 其绕行弧长λ越大; 越内侧的行人, 其绕行弧长λ距离越小, 如图8(b)所示. 同时, 转弯区域的对角线${d_0}$可以看作传统的有形瓶颈, 由有效瓶颈${d_1}$和无效瓶颈${d_2}$两部分组成, 即${d_0} = {d_1} + {d_2}$, 行人在直通道的通行瓶颈宽度为${d_3}$, 且${d_1} < {d_3}$, 有效瓶颈${d_1}$可以看作是转弯区的“隐形瓶颈”, 行人在转弯区域的移动轨迹集中在隐形瓶颈内, 且发生流线压缩现象, 如图8(c)所示. 图 8 行人在场景1无障碍物的L型通道移动的特征分析 (a) 行人在通道移动的四区域; (b) 行人在转弯区域的转弯特征; (c) 行人在通道移动的隐形瓶颈 Figure8. Analysis on the characteristics of pedestrian movement in an L-shaped corridor without obstacles in Scene 1: (a) Four types of areas where pedestrians move in the corridor; (b) the turning characteristics of pedestrians in the turning area; (c) the invisible bottleneck of pedestrian movement in the corridor.
2) 实验场景2 在实验场景2中, 在L型通道转弯对角线处均匀放置了3个防撞柱, 将转弯处的瓶颈均匀分成了4个小型瓶颈${P_1}-{P_4}$供行人通过, 每个瓶颈宽度${W_3}$约为1.1 m, 如图9所示. 图 9 场景2中L型通道转弯处的小型瓶颈设置 Figure9. A small bottleneck setting at an L-shaped corridor bend in Scene 2.
在实验场景2中, 选取一组代表性的行人移动轨迹, 可以发现行人在移动过程中, 主要从靠近弯道内侧的3个小型瓶颈${P_1}-{P_3}$通过, 通行人数比例为11∶12∶7, 没有行人从外围的小型瓶颈${P_4}$通过, 如图10所示. 图 10 行人在场景2有障碍物的L型通道行走的视频截图 Figure10. The video screenshots of pedestrians walking in the L-shaped corridor with obstacles in Scene 2.
基于观察区域内所有行人在观察时间内连续移动的地面坐标, 绘制连续的行人移动轨迹线, 可以明显观察到行人在通过弯道区域时, 会从两侧绕过障碍物, 降低行人聚集通过的程度, 在障碍物前的避免碰撞区域和障碍物后的未占据区域形成菱形空白区域${Z_5}$和${Z_6}$, 且行人均不会进入弯道三角形闲置区域${Z_0}$中进行绕远, 如图11所示. 图 11 行人在场景2有障碍物的L型通道移动的特征分析 Figure11. Analysis on the characteristics of pedestrian movement in an L-shaped corridor with obstacles in Scene 2.
3) 实验场景3 在实验场景3中, 将3个障碍物放置在弯道三角形闲置区域${Z_0}$的斜边处, 行人在移动过程中不会与障碍物碰撞, 依序通过弯道, 如图12所示. 图 12 行人在场景3有障碍物的L型通道行走的视频截图 Figure12. The video screenshots of pedestrians walking in the L-shaped corridor with obstacles in Scene 3.
基于观察区域内所有行人在观察时间内连续移动的地面坐标, 绘制连续的行人移动轨迹线. 相较场景1和场景2, 场景3因放置障碍物压迫减小了行人转弯移动空间, 但行人在通过弯道过程中, 仍会与障碍物组成的边缘相隔一定距离, 留下间隙空间${Z_{{\rm{gap}}}}$, 如图13所示. 图 13 行人在场景3有障碍物的L型通道移动的特征分析 Figure13. Analysis on the characteristics of pedestrian movement in an L-shaped corridor with obstacles in Scene 3.
4) 对比分析 通过对比分析, 3个场景的弯道三角形闲置区域${Z_{01}}-{Z_{03}}$的面积大小关系, 为${Z_{03}} > {Z_{01}} > {Z_{02}}$. 可以明显看到, 由于障碍物压缩区域面积、行人远离障碍物的心理及行为需求, 相较场景1和场景2, 场景3的闲置区域${Z_{03}}$的面积最大, 即行人的弯道可行区域的面积最小; 而且三个场景的隐形瓶颈宽度${d_{02}} > {d_{01}} > {d_{03}}$, 场景3的流线压缩现象最明显, 如图14所示. 图 14 不同场景的弯道三角形闲置区域面积大小对比 (a) 场景1的弯道三角形闲置区域面积; (b) 场景2的弯道三角形闲置区域面积; (c) 场景3的弯道三角形闲置区域面积 Figure14. Comparisons of the area size of the curve triangle idle area in different scenes: (a) The area size of the curve triangle idle area in Scene 1; (b) the area size of the curve triangle idle area in Scene 2; (c) the area size of the curve triangle idle area in Scene 3
因为行人速度分布的离散和随机性, 选取典型的行人速度变化过程, 统计分析3个场景行人通过L型通道速度随时间的变化过程, 如图15所示. 行人通过通道共需要约16 s, 速度变化过程呈波浪变化曲线. 在垂直直行区域, 行人速度逐渐提高到稳定状态1.1 m/s左右; 在过渡和转弯区域, 通过隐形瓶颈时, 速度逐渐降低, 在转弯区域中间速度降到最低0.8 m/s左右; 离开转弯区域后, 在水平直行区域速度又逐渐提高到稳定状态1.1 m/s左右. 图 15 行人在L型通道的速度变化过程 Figure15. The velocity change process of pedestrians in L-shaped corridor.
通过拉伸L型直通道, 形成类似房间行人疏散的场景, 可以更明显地看到在传统认知中由两侧物理边界形成的有形瓶颈${d_{\rm{t}}}$处, 行人流易形成轨迹紊乱和速度降低现象, 如图16(a)所示. 在常见的L型直通道中, 行人在通过有形瓶颈${d_{\rm{t}}}$之前, 虽然没有两侧的物理边界, 但实际上自发形成并经过了隐形瓶颈${d_{\rm{b}}}$, 同时会生成弯道三角形闲置区域${Z_0}$和一定程度的流线压缩, 如图16(b)所示. 图 16 通道中的瓶颈 (a) 传统认知的有形瓶颈; (b) 通道中的隐形瓶颈和有形瓶颈 Figure16. Bottlenecks in the corridor: (a) The physical bottleneck of traditional cognition; (b) invisible and visible bottlenecks in the corridor.
-->
3.1.行人速度修正模型
基于Voronoi图的速度修正模型具有良好的仿真效果, 仿真的基本图与实证数据良好吻合, 且具有良好的拓展性[19]. 模型认为在目标行人视野前方一定范围内的周围行人, 会对目标行人的移动决策产生影响; 但目标行人视野后方的周围行人, 对目标行人的影响较小; 而且视野前方不同方向和距离的周围行人, 对目标行人移动速度的影响各不相同, 如图17所示. 图 17 周围行人对目标行人的速度影响[19] Figure17. Velocity effects of surrounding pedestrians to the target pedestrian[19].
在每仿真时间步长内, 行人走过的类弧长路段对应的圆心角$w'$可由(7)式—(9)式联合计算得到, 如(10)式所示. 设定行人到达转弯区域起始点的坐标为(${x_{il}}, {y_{il}}$), 转弯区域内侧圆心O点的坐标为(${x_0}, {y_0}$), 行人通过转弯区域的自驱动速度方向${{{n}}_{i\theta }}$可由(10)式—(11)式联合计算得到. 行人在转弯区域${Z_3}$的自驱动速度变化过程, 如图19所示. 行人在转弯区域内速度转向到正对水平直行区域时, 完成速度转向过程. 图 19 行人通过转弯区域的自驱动速度时变过程(箭头方向为行人的自驱动速度方向) Figure19. The time-varying process of pedestrians' self-driven velocity through the turning area. (The arrow direction is the direction of pedestrians' self-driven velocity).
由于行人整体密度受场地面积和空间分布的影响较大, 而基于Voronoi元胞的形状随行人位置变化而变化的特征, 可以计算得到个体行人的局部密度, 可以较好地反映每个行人实时的个体密度变化情况[13,21]. 因此, 在行人流仿真过程中, 设定绿色、黄色、橙色和红色四种颜色, 分别描述低密度、中密度、中高密度和高密度的四种局部密度状态. 根据实验和仿真经验, 设定δ为0.25, ${L_0}$为1.5 m, $\Delta t$为0.1, α为1.8. 在90o L型无障碍通道的仿真场景中, 设定竖向通道为3 m × 13 m, 横向通道为3 m × 10 m; 在竖向通道底端3 m × 2 m的范围内生成初始位置固定的20个行人, 如图20所示. 图 20 行人通过L型无障碍物通道的仿真过程($ {W_1} = 3\;{\rm{m}}$, $ {L_1} = 13\;{\rm{m}}$, $ {W_2} = 3\;{\rm{m}}$, $ {L_2} = 10\;{\rm{m}}$) (a) t = 0 s; (b) t = 6.0 s; (c) t = 11.8 s; (d) t = 17.4 s; (e) t = 21.2 s Figure20. The screenshots of the simulation process of pedestrians passing through the L-shaped corridor without obstacles (${W_1} = 3\;{\rm{m}}$, ${L_1} = 13\;{\rm{m}}$, ${W_2} = 3\;{\rm{m}}$, ${L_2} = 10\;{\rm{m}}$).: (a) t = 0 s; (b) t = 6.0 s; (c) t = 11.8 s; (d) t = 17.4 s; (e) t = 21.2 s.
通过仿真观察, 行人在开始阶段在垂直通道内向上方移动, 接近转弯区时向弯道内侧靠近, 通过转弯区后向右方移动, 最后通过水平通道离开系统, 仿真时长为28.3 s, 仿真过程如图20所示. 通过仿真也可以发现, 行人通过90o L型无障碍通道的仿真轨迹线与行人实验的移动轨迹线吻合, 行人以较光滑的圆弧轨迹通过弯道区域, 如图21(a)所示. 通过行人仿真移动轨迹线, 可明显地观察到转弯区域的隐形瓶颈${d_{\rm{b}}}$和弯道三角形闲置区域${Z_{\rm{0}}}$, 以及多列行人簇. 仿真结果与行人实验观察结果相吻合, 如图21(b)所示. 图 21 行人仿真通过L型无障碍通道的轨迹线 (a) 行人移动轨迹线; (b) 在转弯区域形成的弯道三角形闲置区域和隐形瓶颈 Figure21. Pedestrian simulation of the path lines through the L-shaped corridor without obstacles: (a) The pedestrian movement trajectory; (b) the triangular idle area of the curve and the invisible bottleneck formed in the turning area.
由图20可知, 在$ t = 6\;{\rm{s}}$, $ t = 11.8\;{\rm{s}}$和$ t = 17.4\;{\rm{s}}$时, 行人分别分布在L型无障碍通道的垂直直行区域、过渡及转弯区域和水平直行区域; 分别统计各阶段行人速度、个体局部密度情况如图22和图23所示. L型无障碍通道位置与直角坐标系的对应关系如图22(a)所示. 行人在垂直直行区域的速度大都保持在较高的稳定状态(约1 m/s), 但由于前方行人的阻挡, 后方行人速度相对较低, 如图22(b)所示; 行人在过渡及转弯区域的速度变化较大, 出现了不同程度的降低; 但当行人离开转弯区域时, 速度又恢复到了较高的稳定状态, 如图22(c)所示; 行人在水平直行区域的速度均保持在较高的稳定状态(约1 m/s), 但由于后方的行人仍处于转弯区域内, 其速度仍相对较低, 如图22(d)所示. 图 22 L型无障碍通道内不同时刻行人速度分布情况 (a) L型无障碍物通道位置与直角坐标系的对应关系; (b) 行人在垂直直行区域的速度, t = 6.0 s; (c) 行人在过渡及转弯区域的速度, t = 11.8 s; (d) 行人在水平直行区域的速度, t = 17.4 s Figure22. The velocity distribution of pedestrians at different times in L-shaped corridor without obstacles: (a) Corresponding relation between the position of L-shaped straight corridor without obstacles and Cartesian coordinate system; (b) the velocity of pedestrians in vertical straight-ahead areas, t = 6.0 s; (c) the velocity of pedestrians in transition and turning areas, t = 11.8 s; (d) the velocity of pedestrians in horizontal straight-ahead areas, t = 17.4 s.
图 23 L型无障碍通道行人个体局部密度的变化情况 (a) 行人在垂直直行区域的个体局部密度, t = 6.0 s; (b) 行人在过渡及转弯区域的个体局部密度, t = 11.8 s; (c) 行人在水平直行区域的个体局部密度, t = 17.4 s Figure23. The variation trend of the individual local density of pedestrians in L-shaped straight corridor without obstacles: (a) The individual local density of pedestrians in vertical straight-ahead areas, t = 6.0 s; (b) the individual local density of pedestrians in transition and turning areas, t = 11.8 s; (c) the individual local density of pedestrians in horizontal straight-ahead areas, t = 17.4 s.
同时, 行人在垂直直行区域的个体局部密度大都保持在较低的稳定状态, 接近于1 P/m2; 但在中后方区域, 由于前方行人的阻挡, 后方行人的低速度导致了个体局部密度相对较高, 在2 P/m2左右, 如图23(a)所示. 行人在过渡及转弯区域的个体局部密度变化较大, 在过渡区域及刚到水平直行区域的行人较拥挤, 个体局部密度相对较高, 而在转弯区域的行人速度及个体密度均较低, 如图23(b)所示; 行人在水平直行区域的个体局部密度均较低, 低于1 P/m2, 如图23(c)所示. 在L型通道转弯区域对角线处分别设置3个半径为0.25 m的圆形障碍物, 障碍物坐标分别为(0.75, 12.25), (1.5, 11.5), (2.25, 10.75), 其他设置与L型无障碍通道相同. 行人通过转弯区域的仿真过程如图24所示. 由图24可见, 行人在转弯区域有效地避开了障碍物. 图 24 行人通过L型有障碍通道的仿真过程($ {W_1} = 3\;{\rm{m}}$, $ {L_1} = 13\;{\rm{m}}$, $ {W_2} = 3\;{\rm{m}}$, $ {L_2} = 10\;{\rm{m}}$) (a) t = 7.4 s; (b) t = 9.3 s; (c) t = 11.0 s; (d) t = 13.5 s Figure24. The screenshots of the simulation process of pedestrians passing through the L-shaped corridor with obstacles ($ {W_1} = 3\;{\rm{m}}$, ${L_1} = 13\;{\rm{m}}$, $ {W_2} = 3\;{\rm{m}}$, $ {L_2} = 10\;{\rm{m}}$): (a) t = 7.4 s; (b) t = 9.3 s; (c) t = 11.0 s; (d) t = 13.5 s
由图24可知, 在$ t = 7.4\;{\rm{s}}$, $ t = 9.3\;{\rm{s}}$, $ t = 11\;{\rm{s}}$和$ t = 13.5\;{\rm{s}}$时, 行人分别分布在L型有障碍通道的直行、过渡及转弯区域的各个阶段, 现分别统计各阶段的行人速度与个体局部密度情况, 如图25和图26所示. L型有障碍通道位置与直角坐标系的对应关系如图25(a)所示. 行人在垂直直行及过渡区域的速度大都保持在较高的稳定状态(约1 m/s), 但后方行人由于前方行人的阻挡, 其速度相对较低, 如图25(b)所示. 行人在部分过渡及有障碍物转弯区域的速度变化较大, 出现了不同程度的降低; 但当行人离开转弯区域后, 速度又恢复到了较高的稳定状态, 如图25(c)所示. 行人在部分过渡、转弯及水平直行区域的速度出现了分化, 过渡及水平直行区域的行人速度保持在较高的稳定状态约1 m/s, 而在转弯区域的速度相对较低, 如图25(d)所示. 当行人大部分处于转弯及水平直行区域时, 转弯区域的行人速度较低, 而处于水平直行区域的行人速度恢复到较高的稳定状态约1 m/s, 如图25(e)所示. 图 25 L型有障碍通道行人速度的变化趋势 (a) L型有障碍通道位置与直角坐标系的对应关系; (b) 行人接近转弯区域的速度, t = 7.4 s; (c) 行人刚进入转弯区域的速度, t = 9.3 s; (d)行人部分处于转弯区域的速度, t = 11.0 s; (e) 行人大部分通过转弯区域的速度, t = 13.5 s Figure25. The variation trend of pedestrian velocity in L-shaped corridor with obstacles: (a) Corresponding relation between the position of L-shaped corridor with obstacles and Cartesian coordinate system; (b) the velocity at which pedestrians approach the turning area, t = 7.4 s; (c) the velocity at which the pedestrians first enter the turning area, t = 9.3 s; (d) the velocity at which the pedestrians part are in the turning area, t = 11.0 s; (e) the velocity at which the pedestrians pass through the turning area for the most part, t = 13.5 s.
图 26 L型有障碍通道行人个体局部密度的分布情况 (a) 行人接近转弯区域的个体局部密度, t = 7.4 s; (b) 行人刚进入转弯区域的个体局部密度, t = 9.3 s; (c) 行人部分处于转弯区域的个体局部密度, t = 11.0 s; (d) 行人大部分通过转弯区域的个体局部密度, t = 13.5 s Figure26. The individual local density distribution of pedestrians in L-shaped corridor with obstacles: (a) The individual local density at which pedestrians approach the turning area, t = 7.4 s; (b) the individual local density at which the pedestrians first enter the turning area, t = 9.3 s; (c) the individual local density at which the pedestrians part are in the turning area, t = 11.0 s; (d) the individual local density at which the pedestrians pass through the turning area for the most part, t = 13.5 s.
同时, 在刚接近转弯区域时的行人个体局部密度, 大都保持在较低的稳定状态, 接近于1 P/m2, 但由于中后方区域行人的低速度导致其较高的个体局部密度, 约2 P/m2, 如图26(a)所示. 刚进入转弯区域时行人个体局部密度变化较大, 在转弯区域和垂直直行区域中部的行人个体局部密度较高, 如图26(b)所示. 行人部分处于转弯区域时的个体局部密度较高, 约2 P/m2, 如图26(c)所示. 行人在大部分通过转弯区域时其个体局部密度变化较大, 在转弯区域即将到达水平直行区域的个体局部密度较高, 但仍处于末尾过渡区域和到达水平直行区域的个体局部密度较低, 如图26(d)所示. 通过对比分析, 行人通过L型有障碍通道转弯区域的速度, 略低于无障碍物转弯区域的速度, 且有较好的行人分流秩序; 但通过有障碍转弯区域的个体局部密度要大于无障碍物转弯区域的密度. 为了进一步证明该仿真模型对不同尺寸L型通道的适用性, 在图20仿真场景的基础上, 通过扩大垂直直通道的宽度, 同时缩减水平直通道的宽度, 设置非对称的L型通道进行仿真研究. 设定δ为0.7, α为2.5, 其他参数保持不变. 仿真初始时刻, 在垂直直通道底部随机生成20个行人. 行人通过L型通道的仿真过程, 如图27所示. 图 27 行人通过非对称L型通道的仿真过程(${W_1} = 6\;{\rm{m}}$, ${L_1} = 12\;{\rm{m}}$, ${W_2} = 2\;{\rm{m}}$, ${L_2} = 10\;{\rm{m}}$) (a) t = 0.2 s; (b) t = 4.5 s; (c) t = 12.5 s; (d) t = 204 s Figure27. The screenshots of the simulation process of pedestrians passing through an asymmetric L-shaped corridor (${W_1} = 6\;{\rm{m}}$, ${L_1} = 12\;{\rm{m}}$, ${W_2} = 2\;{\rm{m}}$, ${L_2} = 10\;{\rm{m}}$): (a) t = 0.2 s; (b) t = 4.5 s; (c) t = 12.5 s; (d) t = 204 s.