Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51776043)
Received Date:31 December 2020
Accepted Date:12 March 2021
Available Online:07 June 2021
Published Online:20 July 2021
Abstract:Brownian motion refers to the endless random motion of nanometer-to-micron particles suspended in a fluid. It widely exists in nature, and is applied to energy, biology, chemical industry, environment and other industries. As the Brownian motion of the object decreases from the micron level to the nanometer level, the boundary conditions of the particle motion no longer strictly follow the stick hydrodynamic boundary conditions, but are closer to the slip boundary theory, meanwhile, the interaction between particles and solvents has increasingly important influence on particle dynamics. Molecular dynamics simulation is an important means to study nanofluids, which can not only capture the microscopic details of the interactions between particles and solvent molecules in nanofluids, but also have high potential function accuracy. In this paper, an all-atom model of the diffusion of Cu nanoparticles of different sizes in water is established by using the rigid TIP4P/2005 water molecule model as solvent, the dynamic viscosity from the TIP4P/2005 model is in good agreement with the experimental result, which is verified by the Green-Kubo formula. The FCC lattice structure is used to construct Cu particles of 0.5 nm, 1.0 nm, 1.5 nm, 2.0 nm in size, and the interaction between atoms in the particle is described by the EAM potential. The translational diffusion coefficient of particles is fitted by the single particle tracking algorithm and the least square method, the rotational diffusion coefficient of particles is obtained by quaternion transformation. The diffusion coefficient and friction factor of the particles are calculated, and the friction factor is compared with the result under the stick hydrodynamics boundary conditions and the result under the slip boundary conditions. It is found that the frictional factors of translation and rotation of nano-particles lie between the theoretical values predicted by the two boundary conditions. The radial distribution functions of water molecules around nanoparticles of different sizes are calculated, we find that the smaller the particle size, the more obvious the adsorption of solvent molecules will be, and the water molecular layer on the particle surface will increase the effective volume of particles and make the calculation result of friction factor larger. The effect of solvent adsorption on the effective hydrodynamic radius of particles cannot be ignored when calculating the friction coefficient of Brownian motion of nano-particles, especially when the particle radius is close to the solvent radius. In Brownian dynamics, viscous resistance and stochastic force are constrained by fluctuation dissipation theorem, and a reasonable selection of particle friction factor can provide theoretical basis for the improvement of Brownian dynamics. Keywords:nanoparticles/ diffusion coefficient/ friction factor/ hydrodynamic radius
为了得到稳定的水分子体系, 需要确保系统在模拟过程中有足够的时间达到平衡. 选取随机分布的4096个水分子, 大小为49.6 ? × 49.6 ? × 49.6 ?的模拟域, 对弛豫过程中体系的温度和总能进行监测, 温度和总能随平衡时间的变化如图3(a)和图3(b)所示. 可以看出, 体系温度和总能量在300 fs左右时已经达到平衡, 总体积和密度亦趋于稳定. 由于水分子的动力学黏度对摩擦系数的计算至关重要, 本文采用green-kubo公式(5)式计算水的黏度, 该方法将流体的剪切黏度和压力张量中非对角元素的自相关函数联系起来, 通过计算压力张量的非主对角元素pxy, pxz, pyz的平均值得到TIP4P/2005刚性水分子模型的剪切黏度[23], 图 3 水分子模型的验证 (a) NPT系综下体系的温度随时间变化; (b) NPT系综下体系的总能量随时间变化 Figure3. Validation of water molecular model: (a) Curve of temperature over time; (b) total energy of the system over time.
其中Nt为每一段轨迹的关联时间, ri为颗粒的位置坐标. 根据所求均方位移进而确定扩散系数, 然后对每一个关联时间下的Ns个扩散系数进行直方图分析. 如图5所示, 当关联时间较小时, 扩散系数呈正偏态分布, 关联时间很大时, 扩散系数呈负偏态分布, 一个呈正态分布的关联时间即是最佳关联时间[26]. 图 5 半径a = 1 nm的Cu颗粒在不同关联时间下扩散系数分布 Figure5. Diffusion coefficient distribution of Cu particles with radius a =1 nm at different correlation time.
2)确定最佳拟合点. 从(7)式可以看出, MSD曲线的第一个点代表每一段位移的平均, 而最后一个数据点没有被平均. 计算扩散系数时统计点过多或者过少都会对计算结果带来不利的影响, 因此本文计算了每一段轨迹采用不同拟合点时扩散系数D的变异系数(二阶矩/一阶矩), 变异系数最低的拟合点数目即为最佳拟合点[27]. 图6为关联时间t = 1363 ps时得到的变异系数随拟合点变化的曲线, 可以看出, 拟合点数目在20左右时变异系数最低. 图 6 半径a = 1 nm的Cu纳米颗粒在采用不同拟合点拟合时扩散系数的变异系数, 关联时间Nt = 1363 ps Figure6. Variation coefficient of the diffusion coefficient of Cu nanoparticles with radius a =1 nm when different fitting points were used for fitting, correlation time Nt = 1363 ps.
将最佳拟合点下的扩散系数取平均可以得到半径a = 1 nm的Cu颗粒的扩散系数, 采用同样的方法可求得a = 0.5, 1.5, 2.0 nm时颗粒的扩散系数. 图7(a)表示4种颗粒的平动扩散系数, 红色曲线和蓝色曲线分别表示黏性边界条件和滑移边界条件下的预测结果, 从图7(a)可以看出, 平动扩散系数均在预测值之间. 平动扩散的摩擦因子可由$\alpha = {k_{\rm{B}}}T/{D_t}{\text{π}}\eta a$求得, 如图7(b)所示, 当半径a = 1.0, 1.5, 2.0 nm时, 摩擦因子更接近滑移边界条件; 半径a = 0.5 nm时, 摩擦因子更接近黏性边界条件. 随着颗粒尺寸的减小, 摩擦因子应逐渐趋近于4, 但对于颗粒半径为0.5和1.0 nm的颗粒, 摩擦因子有逐渐增大的趋势, 这是因为吸附在颗粒上的水分子增大了颗粒的水动力学半径, 导致计算的摩擦因子偏向黏性边界. 图 7 纳米颗粒的平动扩散特性 (a)不同尺寸Cu纳米颗粒的平动扩散系数; (b)不同尺寸Cu纳米颗粒的平动摩擦因子 Figure7. Translational diffusion characteristics of nanoparticles: (a) Translational diffusion coefficients of Cu nanoparticles with different sizes; (b) translational friction factors of Cu nanoparticles of different sizes.
图 10 颗粒旋转扩散特性 (a)颗粒的转动扩散系数; (b) 颗粒转动扩散摩擦因子 Figure10. Rotational diffusion characteristics of particles: (a) Rotational diffusion coefficients of particle; (b) rotational friction factors of particle.
23.3.纳米颗粒表面溶剂分子的吸附特性 -->
3.3.纳米颗粒表面溶剂分子的吸附特性
在滑移边界条件假设下, 纳米颗粒运动过程中表面不会携带流体分子. 然而考虑到纳米颗粒的粗糙度和固-液相互作用, 颗粒周围往往会吸附溶剂分子, 这部分溶剂分子与纳米颗粒一起做随机运动, 因此吸附的水分子层会对颗粒的有效水动力学半径产生影响. 本文统计了纳米颗粒周围水分子的分布[28], 如图11(a)所示, 通过统计距离纳米颗粒表面为r, 厚度为dr的球壳内的原子数目, 得到了水分子的径向分布函数(RDF), RDF可用下式来计算: 图 11 纳米颗粒周围水分子的RDF (a) RDF计算的物理模型; (b)不同尺寸的颗粒周围水分子的RDF曲线 Figure11. Radial distribution function (RDF) of water molecules around nanoparticles: (a) Physical model for RDF calculation; (b) RDF curves of water molecules around particles of different sizes.