1.China Research Center for Emergency Management, Wuhan University of Technology, Wuhan 430070, China 2.School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China 3.Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 52072286), the China Postdoctoral Science Foundation (Grant No. 2018M632937), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2019IVA075, 2019III053GX)
Received Date:04 January 2021
Accepted Date:19 February 2021
Available Online:16 May 2021
Published Online:20 May 2021
Abstract:In the traditional cellular automata evacuation model, the space is divided into fine grids at a micro level, which is mainly used in a two-dimensional plane case. The evacuation space is mostly a small-scale architectural space or local area. Therefore, it is difficult to simulate a wide range of evacuation scenario, and there are less researches of the cellular automata model for a wide range of evacuation. Therefore, this article combines the movement characteristics and status of the pedestrian flow to establish a mesoscopic cellular automata model of evacuation applied to larger evacuation scenarios. This model uses road cell division instead of planar grid cell division, which augments the area of a single cell physically, increases the number of people occupied by a single cell, and expresses the number of people in each cell in the form of state variables. By changing personnel density and personnel speed, and by introducing “source loading” cell loading to simulate the evacuation of people in the scene, the behavior of pedestrians evacuating from the building to the road in the actual evacuation process can be simulated. The state transition equation simulates the movement of people in the evacuation process. When the number of people in the cell is larger, the density of people in the cell is higher, and their walking speed also decreases, which reflects the distribution and movement characteristics of pedestrian flow. This paper uses this model to divide the evacuation area of the college campus, and divides the entire campus into four evacuation areas. The evacuees in each area are evacuated corresponding to the corresponding exit, by planning the evacuation path, pedestrians walking from the “source loading” cell to the exit for evacuation. Through simulation, it is possible to analyze the macro-evacuation situation in the scene and observe the status change of a single cell. There are observed a high density of people in local road sections during campus evacuation, and the problem about the distribution of people on campus problems such as unevenness of pedestrian distribution and long evacuation schedules in certain places. Through the simulation of this model, possible problems in the actual evacuation process are found, and the improvement guidance and opinions are presented correspondingly. Keywords:mesoscopic cellular automata/ large-scale simulation/ pedestrian evacuation/ partition evacuation
表1区域道路元胞编码统计信息 Table1.Statistical information of regional road cellular coding.
23.3.疏散子网划分 -->
3.3.疏散子网划分
将四个出口分别标记为出口1、出口2、出口3和出口4, 通过计算每个道路元胞与4个“出口”元胞间的距离, 以距离最近的出口作为该元胞疏散的目标出口, 确定4个出口覆盖的道路元胞范围, 如图7所示. 图 7 各出口覆盖疏散道路范围示意图 Figure7. Evacuation range of the roads covered by each exit.
表3各“源加载”元胞加载人数 Table3.The number of pedestrians loaded by each ‘source loading’ cell.
出口
疏散总人数/人
出口1
1600
出口2
1700
出口3
3200
出口4
1700
总计
8200
表4各出口疏散人数 Table4.Evacuation number at each exit.
图 8 “源加载”元胞加载概率密度分布图 Figure8. Probability density distribution figure of “source loading”cell.
24.2.结果分析与讨论 -->
4.2.结果分析与讨论
依据上文给出的元胞加载数据和状态更新规则, 利用介观元胞自动机模型对该校区进行大规模疏散模拟. 根据模拟结果, 绘制出各出口处疏散人数及总疏散人数随时间的变化关系情况如图9所示, 从图9中可以看出, 在40 s之后, 曲线开始呈现上升的趋势, 表示在疏散开始40 s后, 开始有行人从“源加载”元胞运动到“出口”元胞撤离出校园, 疏散人数峰值出现在250 至400 s时间段内, 观察各出口疏散人数随时间的变化关系曲线可以发现出口3和出口4的疏散人数峰值对应的时间点晚于出口1和出口2的疏散人数峰值对应的时间点, 这是由于出口3承载着较大的疏散压力, 而出口4与该疏散子网内加载元胞的距离较远, 总体上看, 该校区的疏散人数呈现先上升, 再稳定, 后下降的情况. 图 9 各出口及总疏散人数随时间变化关系 Figure9. The relationship between the exits and the total number of evacuees varies with time.
图10显示出了各出口及总疏散剩余人数随时间的变化关系情况, 各曲线总体上在疏散前期呈现出平稳的状态, 在经历过一段平稳期后曲线开始显著下降, 在疏散的后期, 下降趋势开始放缓, 疏散剩余人数逐渐趋近于0, 在672 s时刻, 总疏散剩余人数为0.4925 人, 表示所有人员均撤离出校园, 疏散结束. 图 10 各出口及总疏散剩余人数随时间变化关系 Figure10. The total number of remaining evacuees at each exit varies with time.
为了进一步了解元胞状态的微观变化情况, 选取8个“观测”元胞, 观测元胞内人员数量和人员速度随时间的变化情况, 各“观测”元胞的具体位置见图11, 选取的8个“观测”元胞分别分散在四个疏散子网中, 包括1个“源加载”元胞, 1个出口元胞, 4个道路节点元胞和2个道路元胞. 图 11 “观测”元胞的位置分布 Figure11. The location distribution of “observed”cellular
图12和图13显示出了选取的8个元胞的元胞内人数和速度随时间的变化关系, 从图中可以看出元胞7作为“源加载”元胞, 其人数变化和元胞加载概率密度分布图类似, 呈现出严格的梯形变化, 而元胞6作为“出口”元胞, 人数峰值出现在420 s时刻, 晚于其他“观测”元胞的人数峰值时间, 元胞5为出口3前的道路节点元胞, 承载的疏散压力较大, 人数峰值也远高于其他“观测”元胞, 最高人数接近120 人, 其对应位置处的速度也为8个“观测”元胞中最低, 略高于1 m/s, 各“观测”元胞在疏散过程中速度均在1 至1.5 m/s范围内波动. 图 12 各“观测”元胞人数随时间的变化 Figure12. Changes in the number of “observed” cells over time.
图 13 各“观测”元胞速度随时间的变化情况 Figure13. Variations of cell velocity with time in each observed cell.
图14为各元胞在以100 s为时间间隔的时间节点人员数量分布图, 可以观察出在200至400 s时间段内各道路人员数量较高, 各出口承载了较大的疏散压力, 在500 s时刻, 出口1、出口2和出口3出口元胞人数较少, 而出口4仍然还有一定数量行人未完成疏散, 在600 s时刻, 疏散场景内只剩余少量人员, 疏散接近尾声. 图 14 空间人员数量分布图 (a) t = 100 s; (b) t = 200 s; (c) t = 300 s; (d) t = 400 s; (e) t = 500 s; (f) t = 600 s Figure14. Spatial staffing distributions: (a) t = 100 s; (b) t = 200 s; (c) t = 300 s; (d) t = 400 s; (e) t = 500 s; (f) t = 600 s.