1.College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China 2.Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract:Instrument background is an important content in implementing the space-based astronomical mission. For the focusing X-ray telescope, the observation ability is affected by the particle background, which is directly related to the sensitivity of the instrument and the systematic error of background reproducibility. In the iterative process of instrument design and engineering implementation, it is necessary to make sure that the particle background level is within the acceptable level. In this paper, we propose a method of fast estimating the particle background of the space-based focusing X-ray telescope, which is based on interpolation of planar density distribution. With acceptable accuracy and efficiency, this method is suitable for rapidly estimating the background shielding effects of various design schemes, especially in the early stage of telescope scheme design. This can greatly improve the availability of early scheme design. This method has a certain reference significance for developing the focusing space high-energy astronomical instruments and other similar instruments. The commonly used method of estimating the particle background of space X-ray instruments is the Monte Carlo method, which relies on constructing an overall mass model of instrument and simulating the response of the detectors to the space radiation environment, but the calculation efficiency of this method is lower. In order to meet the needs of instrument design optimization of mission during initial stage, we simulate the responses of simplified aluminum spherical shells with different sizes and planar desities to the space radiation environment, and count energy depositing events in a concerned energy range. Then we obtain the relationship between the particle background caused by various spatial radiation components and the thickness of the simplified aluminum spherical shell after being normalized. The particle track tracking method is used to calculate the area density distribution of the equivalent aluminum around the sensitive detectors of the telescope. Finally, the average particle background level of each component is obtained by interpolating calculation according to the relationship between equivalent thickness and the particle background. The method is verified through the simulation of the payload SFA onboard eXTP satellite by comparing the results of the simulation calculation of the whole star mass model with the results from the area density distribution interpolation method, and good consistency is obtained. The method based on the interpolation of the planar density distribution can well depict the relationship between the whole structure and the particle background level, which can be applied to the particle background estimation and shielding optimization for X-ray focusing instruments in different orbital space radiation environments. Keywords:focal plane detector/ background estimation/ shielding optimization
针对空间应用, Geant4软件有多个建议的预封装物理包[23]. 参考高能天体物理学先进望远镜(Athena)项目应用经验[24], 使用QBBC预封装物理包, 包含强相互作用、衰变、输运等过程. 同时为了使低能端响应更准确, 电磁相互作用过程改用精度更高的EmStandardPhysics_option4预封装物理包, 并打开Auger和PIXE过程[23], 即考虑荷电粒子电离导致的特征X射线以及俄歇电子产生, 实现百eV以上精细物理过程. 对于引起粒子本底的空间辐射环境, 在“慧眼”卫星在轨空间环境模型的研究基础上[25], 确定eXTP所在轨道(550 km高度, 0°倾角)空间辐射环境, 轨道处各空间粒子成份的入射谱如图2所示. 主要包括宇宙弥散X射线, 大气反照X射线及中子, 宇宙线原初质子、正负电子及氦核, 以及宇宙线与大气作用产生的次级质子和正负电子. 其中原初宇宙线考虑地球遮挡效应, 大气反照射线仅考虑地球所覆盖立体角[26]. 同时, 观测姿态暂定义为背地指向姿态. 图 2 eXTP所在轨道空间辐射环境输入能谱 Figure2. Incident energy spectrum of the space radiation environment in the orbit of eXTP.
eXTP焦平面探测器质量模型如图3所示. SFA焦平面探测器采用19像素的硅漂移探测器(SDD), 其质量模型主要考虑上层铝膜、二氧化硅极层、硅耗尽层及封装陶瓷结构, 并赋予对应材料及密度. 为了研究不同尺寸、不同厚度(面密度)铝球壳对粒子本底的影响, 构建了简化球壳与SDD质量模型, 如图4所示. 铝球壳半径设置为10, 30, 50, 70 cm, 球壳厚度设置为0, 5, 10, 30, 50, 70 mm. SFA探测单元结构如图5所示, 主要包含电子学机箱、探测器机壳、滤光转轮、安装筒、准直筒等结构. 整星模型如图6所示, 主要包括支撑结构、安装板子、外层板、聚焦镜及其他平台仪器简化结构[14], 基本保持与整星预估质量一致. 图 3 焦平面探测器SDD质量模型 Figure3. Mass model of the focal plane detector SDD.
图 4 简化球壳和SDD质量模型 Figure4. Mass model of simplified aluminum spherical shell and SDD.
图 5 SFA探测单元结构 Figure5. Structure of single SFA module.
图 6 eXTP整星模型 Figure6. Mass model of the eXTP satellite.
面密度分布计算采用径迹追踪方法[27], 在敏感探测位置(即探测敏感区域, SDD位置)各向同性发射虚粒子, 虚粒子具有直线径迹, 仅实现发射方向直线上经过的各种不同材料结构的位置点统计, 依据在各种结构中的径迹长度与密度, 可计算得到该方向总的面密度值. 图7为SFA中SDD位置的面密度分布图. 图 7 SFA探测单元中SDD位置的面密度分布图(左: 正向; 右: 背向) Figure7. Planar density distribution at the position of SDD (left: frontview; right: backview).
4.面密度对SFA粒子本底的影响为了检验球壳尺寸(半径)对粒子本底的影响, 部分成份将球壳半径放大到500 cm, 计算得到的面密度与SFA粒子本底关系见图8. 图 8 粒子本底水平随球壳尺寸及厚度变化 Figure8. Particle background evolution as a function of the size and the thickness of the aluminum spherical shell.
图8给出了基于简化铝球壳结构得到的不同成份粒子本底水平随球壳半径和厚度的变化, 其中纵坐标为能量沉积在0.5—15 keV范围内的计数率(单位为counts·s–1·cm–2·keV–1). 从图8可以看出, 基于简化铝球壳得到的各种成份粒子本底主要依赖于球壳的厚度变化, 即面密度. 其中, 原初本底成份在铝球壳半径为10 cm时有较大不一致. 由于焦平面探测器尺寸(直径D)为3 cm, 铝球壳半径为10 cm时, 焦平面探测器的几何效应引入较大偏离, 随着球壳半径(R)变大, R/D越来越大, 其影响越来越小. 图9为每种本底成份对应同一厚度不同球壳尺寸粒子本底的平均结果, 显示了各个成份粒子本底水平与铝球厚度(面密度)关系. 可以看出, 面密度大于10 g/cm2后, 粒子本底主要来源于宇宙弥散X射线、宇宙线原初质子及次级正电子. 宇宙弥散X射线造成的本底随屏蔽厚度的增加越来越小, 而原初质子随面密度增加反而有越来越多的趋势. 其中, 宇宙弥散X射线造成的本底对面密度特别敏感. 因此, 在进行屏蔽设计时要首先考虑宇宙弥散X射线的屏蔽, 在其控制在一定水平后, 再综合考虑其他成份的贡献. 图10显示了将图9 中对应各种成份本底相加得到的总的粒子本底水平随铝球厚度(面密度)变化. 可以看出, 总的粒子本底水平在面密度小于13.5 g/cm2时, 呈逐渐减小趋势, 在大于13.5 g/cm2时, 呈增加趋势. 图 9 不同成份粒子本底随球壳厚度变化拟合曲线 Figure9. Fitting curves of different particle backgrounds as a function of the thickness of the aluminum spherical shell.
图 10 SFA-SDD总的粒子本底水平随简化球壳厚度变化 Figure10. Total particle background evolution as a function of the thickness of the aluminum spherical shell .
5.结果检验为了验证面密度分布插值估计粒子本底方法的可行性, 以实际eXTP整星模型和SFA质量模型作为输入, 计算焦平面探测器SDD粒子本底水平. 计算过程中, 除将简化球壳替换为eXTP实际结构外, 其他输入与简化球壳计算过程一样. 图11给出了eXTP-SFA整星质量模型(见图6)其中一个SFA单元敏感探测区(SDD位置)的不同方向等效铝厚度分布, 图中50 mm代表厚度不小于50 mm. 可以看出, 在焦平面探测器背向和侧面, 等效铝屏蔽厚度通常大于30 mm, 屏蔽厚度小于15 mm的区域主要集中在聚焦镜间隙及SFA准直筒安装板区域(上侧方). 按照第3节给出的计算过程及基本配置, 将简化球结构替换为实际的整星结构和焦平面探测器周围结构, 计算得到整星质量模型对应的粒子本底水平. 图12给出了整星质量模型(对应面密度分布如图11)模拟计算结果与面密度分布插值法结果对比图. 有效探测能段内, 总的粒子本底水平分别为(2.0 ± 0.5) × 10–3和3.0 × 10–3 counts·s–1·cm–2·keV–1. 图 11 eXTP-SFA整星结构下敏感探测区(SDD位置)的等效铝厚度分布 Figure11. Equivalent aluminum thickness distribution of the whole eXTP at the SDD position.
图 12 面密度分布插值法得到的粒子本底水平与模拟计算结果对比 Figure12. Comparison of particle background level obtained with interpolation of planar density distribution and with simulation.
为了更进一步检验面密度插值法结果的可靠性, 对这些区域采取加厚屏蔽措施, 即增加准直筒高度使准直筒限制视场与聚焦镜外延衔接, 同时增加准直筒安装板厚度到20 mm, 修改前后结构对比见图13, 其敏感探测区(SDD位置)的不同方向等效铝厚度分布见图14. 图15给出了修改SFA结构后(见图13, 对应面密度分布见图14)模拟计算结果与面密度分布插值法结果的对比图. 有效探测能段内, 总的粒子本底水平分别为(3.0 ± 0.7) × 10–3 和2.9 × 10–3 counts·s–1·cm–2·keV–1. 由于整星质量模型的计算效率非常低, 基于质量模型计算结果的差异主要由统计误差引起. 面密度分布插值法估计粒子本底水平与使用实际质量模型通过模拟计算得到的结果有很好的一致性. 图 13 结构更改前后质量模型剖视图(左: 更改前; 右: 更改后) Figure13. Structure of the mass model before and after structure modifications (left: before modifications; right: after modifications).
图 14 结构更改后等效铝厚度分布 Figure14. Equivalent aluminum thickness distribution after the structure modifications.
图 15 结构更改后面密度分布插值法得到的粒子本底水平与模拟计算结果对比 Figure15. Comparison of the particle background levels after the structure modifications, from the interpolation of planar density distribution and the simulation, respectively.
6.讨 论与eXTP-SFA实际质量模型输入计算得到的结果相比, 面密度分布插值法对聚焦型空间X射线仪器的估计精度在50%左右, 而目前通过质量模型模拟计算得到的粒子本底与在轨实测相比最高精度在20%左右[9]. 由于本文计算得到的面密度与SFA粒子本底关系基于简化球壳结果, 受统计量限制(厚屏蔽时计算量太大), 未引入空间辐射环境对简化球壳不同方位的影响, 例如地球遮挡导致宇宙线指向天顶方向附近流强更低, 而大气反照成份主要来自地球大气, 这导致插值法结果在较大立体角范围屏蔽较弱时偏离模拟计算结果较大. 屏蔽厚度增加对粒子本底水平的影响, 以占比较高的次级正电子成份为例. 由于次级正电子成份能谱较软, 随厚度再增加, 粒子本底水平开始趋于稳定并逐步减小, 见图16. 随厚度变化趋势主要和空间辐射环境有关. 粒子能谱较软, 则其达到峰值对应的面密度会变大. 影响粒子本底水平的主要为内壁薄层内的次级粒子成份, 屏蔽增厚, 内壁薄层处的粒子流强降低, 粒子本底水平降低. 图 16 次级正电子成份随屏蔽厚度增加变化趋势 Figure16. Variation of the secondary positron composition as a function of the shielding thickness.