1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China 2.Southwestern Institute of Physics, Chengdu 610041
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11875098, 11805054) and the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2017YFE0300501)
Received Date:24 August 2020
Accepted Date:02 October 2020
Available Online:04 February 2021
Published Online:20 February 2021
Abstract:In tokamak plasmas, the resistive wall mode is a very important magnetohydrodynamic instability, and its time scale is on the order of millisecond. For the advanced tokamaks with long-pulse and steady-state operation, the resistive wall mode limits the operating parameter space (the discharge time and the radio of the plasma pressure to the magnetic pressure) of the fusion devices so that it affects the economic benefits. Therefore, it is very important to study the stability of the resistive wall modes in tokamaks. In this work, the influences of the plasma rotations and the feedback controls on the resistive wall modes are studied numerically using MARS code for an ITER 9 MA equilibrium designed for the advanced steady-state scenario. In the equilibrium, the profile of the safety factor has a weak negative magnetic shear in the core region. The safety factor is ${q_0}= 2.44$ on the magnetic axis and ${q_a}= 7.13$ on the plasma boundary. And, the minimum safety factor ${q_{\min }}$ is 1.60. The structure of this kind of weakly negative magnetic shear can generate higher radio of the plasma pressure to the magnetic pressure and it is the important feature of the advanced steady-state scenario. Using MARS code, for two cases: without wall and with ideal wall, the results of growth rates of the external kink modes for different values of ${\beta _{\rm N}}$ are obtained. The limit value of $\beta _{\rm N}^\text{no-wall}$ is 2.49 for the case without wall, and the limit value of $\beta _{\rm N}^\text{ideal-wall}$ is 3.48 for the case with ideal wall. Then, a parameter ${C_\beta } = \left( {{\beta _{\rm{N}}} - \beta _{\rm{N}}^{{\text{no-wall}}}} \right)/\left( {\beta _{\rm{N}}^{{\text{ideal-wall }}} - \beta _{\rm{N}}^{{\text{no-wall }}}} \right)$ is defined. The research results in this work show that with the plasma pressure scaling factor ${C_\beta } = 0.7$ and plasma rotation frequency ${\Omega _{0}} = 1.1\% {\Omega _A}$, the resistive wall modes can be completely stabilized without feedback control. And, with the plasma pressure scaling factor ${C_\beta } = 0.7$ and the feedback gain $\left| G \right| = 0.6$, only plasma rotation with the frequency ${\Omega _{0}} = 0.2\% {\Omega _A}$ can stabilize the resistive wall modes. Therefore, a faster plasma rotation is required to stabilize the resistive wall modes by the plasma flow alone. The synergetic effects of the feedback and the toroidal plasma flow on the stability of the RWM can reduce plasma rotation threshold, which satisfies the requirements for the operation of the advanced tokamaks. The conclusion of this work has a certain reference for the engineering design and the operation of CFETR. Keywords:resistive wall mode/ plasma flow/ magnetic feedback
用等离子体旋转结合平行黏滞来稳定电阻壁模需要很大的临界等离子体旋转阈值, 像ITER等这种大型托卡马克难以达到, 需要主动控制(反馈控制)参与. 如图1所示, ITER装置的反馈系统是由三组反馈线圈和一组传感器组成的, Li等[20]分析了电压-电流、电压-电压、磁通-电流以及磁通-电压四种反馈方式, 本工作采用的反馈控制是磁通-电流反馈控制. 首先给出主动反馈线圈产生的磁场分布, 如图6所示, 以${C_\beta }$ = 0.7为例, 可以看出不加等离子体旋转, 只考虑主动反馈线圈时, 在等离子体边界有比较大的磁场分布, 芯部基本没有线圈产生的磁场. 图 6 没有等离子体旋转频率, ${C_\beta }$ =0.7时, 计算得到的主动线圈产生的磁场分布 Figure6. Without plasma flow and equilibrium pressure scaling factor ${C_\beta } = 0.7$, the calculated magnetic field distribution of active coil.
然后, 在研究三组线圈增益前, 为达到上下两组线圈相位的最佳组合, 利用MARS-F程序对上下两组线圈的相位进行了扫描. 首先固定上下两组线圈增益为$|G|$ = 0.5, 固定一组线圈相位, 去扫描另一组线圈相位, 以找到最佳的相位组合, 如图7所示, 电阻壁模的增长率随上下两组线圈的相位组合不同而不同, 在上下两组线圈的相位为${\phi _{\rm{u}}}$ = 150°, ${\phi _{\rm{L}}}$ = –150°时, 反馈控制电阻壁模的效果最好, 把这一相位组合称为最佳相位组合, 和Wang等[12]采用磁通-电压的反馈控制方式相位扫描的结果一致, 以下所有上下线圈的研究中, 上下线圈的相位均取${\phi _{\rm{u}}}$ = 150°, ${\phi _{\rm{L}}}$ = –150. 图 7 线圈增益幅值为$|G|$ = 0.5时, 上下两组线圈不同相位下电阻壁模的增长率 Figure7. Growth rate of resistive wall mode with varying phase of feedback gains for upper and lower sets of active coils, feedback gain amplitude $|G|$ = 0.5.
接着, 在没有等离子体旋转频率, 平行黏滞${\kappa _\parallel } =1.5$时, 分别研究了中间反馈线圈、上下两组反馈线圈及三组反馈线圈的增益对电阻壁模的影响, 如图8—图10所示. 对比发现, 等离子体比压越大, 所需要稳定电阻壁模的临界增益越大; 在不同等离子体比压下, 当反馈增益逐渐增大时, 增长率慢慢变小, 当增益幅值足够大时, 能使得电阻壁模的增长率为零, 稳定电阻壁模, 这是因为通过导体壁泄露的磁场已由中间反馈线圈得到补偿, 此时导体壁等效为理想壁. 定义完全稳定电阻壁模的增益为临界反馈增益${G_{{\rm{cri}}}}$, 当G > ${G_{{\rm{cri}}}}$时, 电阻壁模是稳定的, 当G < ${G_{{\rm{cri}}}}$时, 电阻壁模仍然会增长, 最终影响高比压等离子体放电. 例如在${C_\beta }$ = 0.6时, 中间一组线圈稳定电阻壁模所需的临界增益为$|G|$ = 1.2, 上下两组线圈稳定电阻壁模所需的临界增益为$|G|$ = 1.6, 上中下三组线圈稳定电阻壁模所需的临界增益为$|G|$ = 0.7, 可见, 在只有反馈控制中, 上中下三组反馈线圈的控制效果更好. 图 8 在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/} } =1.5$时, 不同的等离子体比压参量, 不同中间线圈的增益下电阻壁模的增长率变化 Figure8. Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for middle sets of active coils.
图 9 在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/}} =1.5$时, 不同的等离子体比压参量, 不同上下两组线圈的增益下电阻壁模的增长率变化 Figure9. Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/}}=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for upper and lower sets of active coils.
图 10 在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/} } =1.5$时, 不同的等离子体比压参量, 不同上中下三组线圈的增益下电阻壁模的增长率变化 Figure10. Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for all three sets of active coils.
图 12 在等离子体旋转频率${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002、平行黏滞${\kappa _{/\!/} }=1.5$时, 不同的等离子体比压参量, 加上旋转后上下两组线圈的增益和增长率的变化 Figure12. With plasma flow ${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002 and parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for upper and lower sets of active coils.
图 13 在等离子体旋转频率${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002、平行黏滞${\kappa _{/\!/}}=1.5$时, 不同的等离子体比压参量, 加上旋转后上中下三组线圈的增益和增长率的变化 Figure13. With plasma flow ${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002 and parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for all three sets of active coils.