1.Department of Physics, Beijing Normal University, Beijing 100875, China 2.School of Basic Medical Sciences, Air Force Medical University, Xi’an 710032, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11974052) and the Natural Science Foundation of Beijing, China (Grant No. Z190008)
Received Date:10 June 2020
Accepted Date:06 September 2020
Available Online:02 November 2020
Published Online:05 November 2020
Abstract:Over the past decades, exploration and artificial control of the surface and interfacial structure of the materials have played an important role in chemical catalyzing, energy conversion, information storage and medical field, and thus the finding of suitable materials with controllable surface/interface properties has attracted intense interest in recent years. Perovskite-type ferroelectric oxides are considered to be one of the most promising functional materials due to their intrinsic, non-volatile, reversible spontaneous polarization and controllable polar surface with high charge density. The investigating of the interaction between polarization and surface structure of perovskite-type ferroelectric oxide is very important for understanding the surface (interface) energy conversion, regulating the adsorption and desorption on the surface, controlling interfacial chemical reaction, and designing stable low-power electronic devices. In this paper, we summarize the theoretical mechanism and potential applications of the surface structures and functionality in perovskite-type ferroelectric oxide from three aspects. Firstly, we describe the inseparable relationship between the stabilized ferroelectric phase and surface structure of ferroelectric material, and illustrate the formation mechanism of complex surface structure of perovskite-type ferroelectric oxide. In order to reduce the surface energy to stabilize the polar surface of the material, perovskite-type ferroelectric oxide always needs to absorb foreign charged particles, change the stoichiometry and conduct electron orbital hybridization or surface relaxation, etc., which will cause the complexity of the surface structure of ferroelectric. Secondly, we outline the influence of ferroelectric polarization on the surface structure of ferroelectric and the behavior of changing ferroelectric polarization by controlling surface structure through adjusting the external environment, which provides an important basis for the subsequent regulation of the surface performance and functionality of perovskite-type ferroelectric oxide. Finally, we introduce the utilization of the controllable physical and chemical properties of ferroelectric surface (interface) into large area and into nanoscale (nanodomain), which has bright application prospects in many frontier fields, including non-volatile memory system, cell proliferation, microfluidic control system, catalysis, optical device and photodetector and so on. Furthermore, considering the limitations of current scientific research about the ferroelectric surface, we put forward the prospects for the future development of the ferroelectric material in the areas of information storage, controllable chemical reactions and new energy conversion. Keywords:ferroelectric polarization/ perovskite oxides/ polar surface/ solid-liquid interface
全文HTML
--> --> -->
3.铁电表面/界面结构调控机制通过上述对铁电表面结构的研究, 可以得知钙钛矿型铁电氧化物的表面结构能够受其极化方向、大小的影响, 那么是否可以通过控制铁电极化实现对铁电表面结构的有效调控呢?Yun等[32,33]发现改变LiNbO3(LNO)薄膜铁电极化的方向会影响其极性表面与分子的静电相互作用, 从而造成乙酸和异丙醇等极性分子与非极性分子相比在LNO不同极性表面的吸附能具有明显的差异, 而且改变LNO铁电极化的大小可以导致铁电表面静电势的变化, 并会进一步影响这些极性分子在表面的吸附, 从而影响表面结构, 如图3(a)和图3(b). 此外, 由于铁电极化的方向决定其表面电场的方向, 因此通过改变铁电体的极化方向还可以调控铁电材料表面/界面的电子态. 如Kolpak等[34]利用密度泛函理论计算了极化方向对负载在PTO上超薄Pt薄膜的表面特性的影响, 他们发现底层PTO极化方向的不同可以影响Pt的d能带态密度, 这种电子结构的改变会导致O, C和N等粒子在材料表面的吸附能不同. 因此, 通过改变铁电极化的大小、方向可以调控钙钛矿型铁电氧化物的表面/界面结构及其表面分子的物理化学行为. 图 3 (a) LNO的正极性和负极性表面对异丙醇脱附的数据比较[32]; (b) LNO的正极性和负极性表面对乙酸、异丙醇和十二烷脱附的β/TP2-TP图[33]; (c) 电解质溶液中极化向内的铁电薄膜上方的双电层结构和对应电势的示意图; (d) 带负电荷的探针与极化向内或向外的铁电薄膜之间的双电层结构和相互作用力[37]; 极化向外(e) 和向内(f) 的BFO表面分别吸附 H+ (e) 和 OH– (f) 后极化翻转的示意图[26] Figure3. (a) Comparison of 2-propanol desorption from positively and negatively poled LNO[32]; (b) plots of β/TP2 versus TP for desorption of acetic acid, 2-propanol and dodecane from positively and negatively poled LNO[33]; (c) schematic of the electric double layer structure above an inward-polarized ferroelectric thin film in an electrolyte solution and a corresponding sketch of the potential; (d) the electric double layer structure and interaction force between a negatively charged probe and a ferroelectric thin film with inward or outward polarization[37]; schematic diagrams show BFO polarizations are switched from outward/inward to inward/outward after surfaces adsorbed H+ (e) or OH– (f), respectively[26].
通过调控钙钛矿型铁电氧化物的表面结构, 可以影响材料表面的物理性质, 从而可以将其调控机制应用在相关领域中. 如铁电畴的取向会影响材料表面气体分子的吸附, 这为气相传感器件的开发提供了新的平台[7]. 钙钛矿型铁电氧化物与液体接触会在界面形成亥姆霍兹双电层结构, 这种双电层结构可以使铁电材料与液体界面处形成离子梯度, 从而应用在界面传感装置中, 如图4(a)所示[35]. 另外, 这种带有高电荷密度的铁电材料表面及其双电层结构还可以被用于非易失性存储的场效应晶体管中, 通过改变铁电极化方向调控铁电材料表面的正负补偿电荷浓度, 控制沟道的导通与断开从而实现数据的写入与读取, 如图4(b)所示[45,46]. 图 4 (a) 钙钛矿型铁电氧化物与液体界面形成离子梯度[35]; (b) 双电层晶体管示意图[46]; 示意图展示了钙钛矿型铁电氧化物表面电荷诱导的pH梯度(c)、极性大分子的高度变化(d), 以及利用铁电材料的表面电场控制溶液中带电粒子的流动方向(e) [35]; (f) 带正电的纳米膜植入体表面与带负电的内源性骨缺损壁之间形成内建电场[10] Figure4. (a) Ionic gradient is formed in the interface between perovskite-type ferroelectric oxides and liquid[35]; (b) a schematic of the electric double-layer transistor[46]; schematic diagrams show pH gradients (c) and macromolecular height change (d) are induced by surface charges of perovskite-type ferroelectric oxides; and (e) the flow direction of charged particles in solution is controlled by the surface electric field of ferroelectric materials[35]; (f) a built-in electric field is formed between the electropositive nanofilm implant surface and electronegative endogenous bone defect wall[10].
钙钛矿型铁电氧化物除了可以通过静电相互作用调控材料表面、固液界面的物理性质外, 还可以通过调控表面结构进而控制材料表面的化学反应. 铁电体的自发极化引起的退极化场和能带弯曲不仅能够有效降低电子和空穴的复合, 从而提高表面化学反应效率, 而且还可以通过控制铁电极化的方向调控表面结构, 进而对材料表面的化学反应产生影响[49,50]. 由于钙钛矿型铁电氧化物表面处的能带会发生弯曲, 光生电子或空穴会由于内建电场和表面能带弯曲的作用从体相迁移至表面, 表面附近电子结构的变化决定了可用于发生表面反应的载流子类型, 从而特定地选择材料表面的化学反应类型[51]. 如Ag+离子在极化向外的铁电表面被还原成Ag颗粒, 并吸附沉积在BTO表面; 而在极化向内的铁电表面会发生氧化反应, 使Pb2+离子成为Pb4+离子, 如图5(a)和图5(b)[52,53]. 因此改变铁电极化方向可以使同一铁电材料的光生载流子发生不同方向的迁移, 这实现了材料本身即可以作为光阳极使光生空穴到达表面参与析氧反应, 又可以作为光阴极使光生电子到达表面参与析氢反应[54]. 另外, 铁电薄膜表面特殊的晶界和畴壁(如带电荷畴壁)处由于电荷屏蔽和能带弯曲等原因促进载流子迁移至反应物, 也可使特定的化学反应发生[55,56]. 如本课题组最近发现BWO (001)铁电薄膜中带有负或正束缚电荷的畴壁可以诱导出双功能光电极行为, 如图5(c)和图5(d)所示[57,58]. 总之, 通过改变铁电极化进而调控钙钛矿型铁电氧化物的表面结构, 能够提高材料的光催化反应活性和控制铁电表面的化学反应, 这可以为反应催化剂、绿色能源开发和环境保护方面的应用提供了新的思路. 图 5 极化向外(a)或极化向内(b)的BTO与Ag+还原电位、Pb2+氧化电位的能带结构图, EV代表价带顶的能量, EC代表导带底的能量, EF代表费米能, P代表极化[53]; (c)和(d) 分别展示了BWO(001)中带不同电荷畴壁的水分解示意图[57]; (e) 计算模拟通过动态翻转PTO的铁电极化可以实现将一氧化氮合成为氮气和氧气的过程示意图; (f) 铁电极化调控分子与表面相互作用的示意图[11] Figure5. Energy band structure of BTO with outward (a) or inward (b) polarization and Ag+ reduction potential, Pb2+ oxidation potential, respectively, EV is the valence band edge, EC the conduction band edge, EF the Fermi level, P polarization[53]; (c) and (d) show the schematics of water splitting mechanism of different charged domain walls in BWO (001), respectively[57]; (e) simulation shows the decomposition process of nitric oxide into nitrogen and oxygen can be realized by dynamically switching ferroelectric polarization of PTO; (f) schematic of molecule-surface interaction controlled by ferroelectric polarization[11].
除了上述对钙钛矿型铁电氧化物表面的物理性质以及化学反应调控外, 微纳尺寸的铁电表面局域电场的调控(纳米铁电畴结构调控)及其应用开发一直受到研究者们的青睐[12,60]. Guo等[12]提出利用BFO周期性的极性表面(周期性铁电畴结构调控)对石墨烯施加周期性电场, 以增强入射光子的吸收, 可以诱导出可调谐的吸收峰和产生5—20 μm探测能力的超高光响应, 这种利用周期性铁电畴调谐的石墨烯等离子体光电探测器有望克服现有的基于活性石墨烯的光电探测器响应速度慢和光吸收能力有限的缺点, 如图6(a)所示. 另外, 通过对钙钛矿型铁电氧化物纳米畴结构的设计和制备来调控局域电子结构和表面电场, 能够控制材料表面的物理化学特性. 如Kalinin等[61]利用PZT微纳尺寸的铁电畴结构调控表面电子结构, 以控制材料表面局域的化学反应, 如图6(b)所示. Christophis等[62]也在周期性微纳尺寸的铁电畴结构的LiTaO3(LTO)表面发现扩散的成纤维细胞避免在畴壁这种高电场梯度的位置上黏附, 因此可以通过设计微纳尺寸的铁电畴、畴壁结构调控表面电场分布进而精确定位细胞生长. 一般钙钛矿型铁电氧化物纳米畴结构的设计、制备可以通过在表面电极外加电压、利用原子力探针外加电压、电子束辐射、飞秒激光照射或化学腐蚀等方法[63-65], 最近发现利用离子相互作用控制铁电极化并结合微纳光刻技术实现了可“擦写”铁电极化的大面积“印刷”技术, 这为高效制备基于铁电体纳米畴结构的功能器件提供了强有力的支持, 如图6(c)和图6(d)所示[26]. 总之, 开发设计以钙钛矿型铁电氧化物微纳尺寸的、周期性的铁电畴结构为基础的器件, 可以在光学、生物医学、集成传感器和无线通信等领域有着广泛的应用前景. 图 6 (a) 基于铁电畴调谐的石墨烯等离子体光电探测器的自驱动微型光谱仪的吸收特性, 目标光谱范围从5—20 μm[12]; (b) 扫描探针显微镜观察到的具有周期性畴结构的PZT薄膜上的Ag光沉积[61]; (c) BFO薄膜暴露在酸性溶液(pH = 3)后的铁电极化翻转为向内, 暴露在纯水溶液后极化翻转为向外; (d) 将BFO暴露在不同pH值的水溶液中, 印刷和消除铁电极化的原理图[26] Figure6. (a) The absorption characteristics of a self-driven micro-spectrometer based on the graphene plasmonic photodetector tuned by ferroelectric domains, the target spectrum ranges from 5 to 20 μm[12]; (b) Ag photodeposition on the PZT thin film with periodic domain structure observed by scanning probe microscopy[61]; (c) the ferroelectric polarization of BFO thin film is switched to inward after being exposed to acidic solution (pH = 3) and then outward after being exposed to Milli-Q water; (d) the schematic of printing and erasing the ferroelectric polarization by exposing the BFO to aqueous solution with different pH value[26].