1.School of Science, Henan Institute of Engineering, Zhengzhou 451191, China 2.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51902088), the Programs for Tackling Key Problems in Science and Technology of Henan Province, China (Grant Nos. 202102210002, 202102210041), and the Henan Province College Students′ Innovation and Entrepreneurship Training Program, China (Grant No. S201911517008)
Received Date:22 April 2020
Accepted Date:06 July 2020
Available Online:21 October 2020
Published Online:05 November 2020
Abstract:With the rapid development of the electronics industry, the dielectric materials with high energy storage density, fast charge and discharge speed, easy-to-process and easy-to-mold, and stable performance are urgently needed to meet the requirements for lightweight and miniaturization of electronic component equipment. Dielectric ceramics has a high dielectric constant, but low breakdown field strength. Polyvinylidene fluoride (PVDF) has the advantages of good flexibility, high breakdown field strength, and light weight, but its dielectric constant is low. Achieving the ability to tailor the interface between dielectric ceramics filler and PVDF polymer matrix is a key issue for realizing the desirable dielectric properties and high energy density in the nanocomposites. As a result, much effort has been made to prepare the polymer composites through the surface modification of the nanoparticles with high dielectric constant fillers dispersed in a matrix, with the hope of preparing composites containing the high dielectric constant of the ceramic fillers and the high breakdown strength of polymers. In this work, in order to obtain the high dielectric-constant and high-energy-storage-density dielectric ceramics, the electrospinning method is used to prepare the SrTiO3 one-dimensional nanofibers as the inorganic fillers and the casting method is adopted to prepare PVDF as the polymer matrix. To improve the interface between inorganic nanofiber fillers and PVDF matrix, the SrTiO3 nanofibers are modified by surface hydroxylation. The effects of suface hydroxylated SrTiO3 nanofibers on the dielectric properties and energy storage properties of PVDF composites are studied. The correlation between interface modification and energy storage performance of composites is investigated to reveal the mechanism of enhanced energy storage performance of SrTiO3 nanofibers/PVDF composites. The results show that the dispersion of surface-hydroxylating SrTiO3 nanofibers in PVDF polymer can be improved. The composites exhibit improved dielectric properties and enhanced breakdown strength. When the filling quantity of the surface-hydroxylating SrTiO3 nanofiber fillers is 2.5 vol%, the energy storage density of the composite reaches 7.96 J/cm3. Suface-hydroxylating SrTiO3 nanofibers exhibit excellent dispersion in the PVDF polymer matrix and strong interfacial adhesion with the matrix, leading the composites to possess excellent dielectric constant and energy storage performance. The surface hydroxylation of ceramic fillers can improve the energy storage performance of the composites. Keywords:strontium titanate/ energy storage property/ nanofiber/ surface modification
全文HTML
--> --> -->
3.实验结果与分析图1(a)为静电纺丝法制备的ST NF的SEM图, 可以看到ST NF都呈纤维状, 均具有较大的长径比, 其直径约为100—200 nm. 图1(b)为表面羟基化改性前后ST NF的XRD图, 在图中仅仅观察到了ST NF粉体的衍射峰出现在2θ为22°, 31°, 39°, 45°, 51°, 56°, 66°处, 分别对应于钙钛矿结构的钛酸锶晶体(100), (110), (111), (200), (210), (211), (220)晶面的7个特征峰外, 不存在其他物相的衍射峰, 说明合成的粉体为钙钛矿结构钛酸锶, 对比表面羟基化改性前后ST NF的XRD图谱, 并没有出现其他的杂质峰. 表1列出了羟基化处理前后样品的晶体结构, 可以发现羟基化处理前后样品的晶体结构、空间点群均没有变化, 晶格常数基本保持不变. 以上结果表明: 表面羟基化改性对ST NF的晶体结构没有影响, 羟基化改性后的ST NF仍为立方相结构. 图 1 (a)静电纺丝法制备的ST NF的SEM图; (b)表面羟基化改性前后ST NF的XRD图 Figure1. (a) SEM image of ST NF; (b) XRD patterns of ST NF and ST NF—OH.
样品
PDF卡片编号
晶相
空间群
晶格参数/nm
ST NF
35-0734
立方相
Pm-3m
a = b = c = 0.3911
ST NF—OH
35-0734
立方相
Pm-3m
a = b = c = 0.3915
表1羟基化处理前后样品的晶体结构 Table1.Crystal structure of the samples before and after hydroxylation.
图2为羟基化表面改性前后的ST NF粉体的FT-IR谱. 从图2可以明显看到: 其中出现在556 cm–1处的峰应的是钛酸锶钡中Ti—O键的振动产生的吸收峰, 1050 cm–1处的峰对应的是钛酸锶钡中C—O键的伸缩振动产生的吸收峰, 1631 cm–1处的峰对应的是$ \rm CO_3^{2-} $的振动产生的吸收峰, 相对于羟基化表面改性前的ST NF而言, 经过羟基化改性后的ST NF—OH在3450 cm–1处出现了较宽的吸收峰, 该吸收峰对应的是羟基基团的伸缩振动[9], 从而说明羟基基团已接枝到了ST NF表面. 图 2 ST NF和ST NF—OH的FTIR图 Figure2. FTIR of ST NF and ST NF—OH.
表面羟基化处理前后的ST NF的XPS全谱扫描图见图3, 可以明显看到: 表面羟基化处理前后的ST NF样品中, 均在269 eV (Sr 3p), 458 eV (Ti 2p), 531 eV (O 1s)和285 eV (C 1s)处出现了特征峰, 这些特征峰分别对应于, Sr, Ti, O元素, 此结果对应于文献[4]中的报道, 而位于285 eV附近的C 1s谱峰可能来自用C元素进行仪器矫正时, 少量的C元素残留在仪器表面所致. 插图为表面羟基化处理后的ST NF的O 1s元素的精细扫描谱线, 对O 1s元素进行了分峰拟合. 结果表明, 电子结合能在529.3 eV处附近特征峰对应于SrTiO3中O原子的峰, 电子结合能在531.6 eV的特征峰峰对应于—OH基团中O的峰. 同时通过对拟合得到的SrTiO3中O原子的峰面积和—OH基团中O的峰面积进行换算处理, 可以得到羟基化处理前后ST NF表面羟基化程度相对含量: 羟基化处理之前, ST NF表面的羟基化程度仅为3.7%, 而羟基化处理之后ST NF—OH表面的羟基化程度为14.5%; 羟基化处理之后ST NF—OH表面的羟基化程度远大于处理之前的结果. 以上结果均表明: 羟基化处理后, —OH基团被引入到ST NF的表面[15]. 图 3 (a) ST NF的XPS全谱扫描图; (b) ST NF—OH的XPS全谱扫描图; 插图为O 1 s元素的精细扫描谱线 Figure3. (a) XPS spectra of ST NF; (b) XPS spectra of ST NF—OH. High-resolution XPS spectra of O 1 s are shown in the inset.
图4给出了羟基化处理前后ST NF的SEM图, 处理前后ST NF的形貌变化较小, 处理前后ST NF均具有完整的纤维状形貌. 纤维的直径为100—150 nm, 长度为2—10 μm, 均具有较大的长径比. 图 4 (a) 羟基化处理前ST NF的SEM图; (b) 羟基化处理后ST NF的SEM图 Figure4. (a) SEM image of ST NF before hydroxylation; (b) SEM image of ST NF—OH.
填充量为5% (体积分数)的ST NF—OH/PVDF复合材料表面SEM图和截面的SEM图见图5. 从图5(a)可知, ST NF—OH填料具有良好的一维形貌, ST NF—OH填料均匀分散在PVDF基体中, 没有明显的团聚现象. 另外, 从复合材料的截面图(图5(b))可以看出, ST NF—OH填料沿着平行于复合材料表面的方向均匀分散在PVDF基体中, 基本没有气孔、微裂纹等结构缺陷的出现. 这是因为羟基自身具有较强的电负性, 而PVDF中的F键自身也具有较强的电负性, 羟基与F键两者可以相互作用形成氢键(F—HO), 羟基化处理后ST NF与PVDF形成氢键的示意图见图6, 氢键的形成可以改善ST NF在聚合物基体中的分散、增强ST NF与聚合物基体之间的界面结合性能. 以上结果表明ST NF—OH在PVDF基体中有很好的分散性和兼容性. 图 5 5% (体积分数)填充量ST NF—OH/PVDF复合材料的(a)表面形貌和(b)截面形貌 Figure5. (a) Surface SEM and (b) cross-section SEM of 5% (volume fraction) ST NF—OH/PVDF composites
图 6 羟基化改性后ST NF与PVDF形成氢键的示意图 Figure6. Schematic diagrams of formation a bridge between the F atoms on the PVDF and the —OH groups of the hydroxylation of ST NF.
为了研究ST NF—OH填料对复合材料介电性能的影响, 对ST NF—OH/PVDF复合材料室温的介电常数和介电损耗进行了测试, 图7(a)和图7(b)分别为室温条件下不同填充量ST NF—OH/PVDF复合材料的介电常数和介电损耗随频率的变化. 从图7(a)可以看出, 复合材料的介电常数随着ST NF—OH填料的增加而不断增加, 这是因为: 一方面, ST NF—OH填料的介电常数大于PVDF基体, 当填料加入到PVDF基体中时, 介电常数较低的PVDF聚合物基体会承受更大的电场强度, 进而导致PVDF聚合物基体产生更大的极化; 另一方面, 由于填料和基体两相介电常数的差异较大, 造成复合材料两相界面处出现Maxwell-Wager-Sillars (MWS)界面极化, 且随着ST NF—OH填料的增多, 会出现更多的两相界面, 造成了MWS界面极化的增强[22-24], 这两方面的因素导致复合材料介电常数随着填料的增加而增加. 同时从图7(a)可以看出纯PVDF的介电常数低(7.9在1 kHz). 复合材料的介电常数随着ST NF—OH填料含量的增高而不断增加, 这意味着可以通过改变ST NF—OH填料的含量对复合材料的介电常数进行调节. 当ST NF—OH填充量为7.5% (体积分数)时, 复合材料的介电常数达到13.8, 这是纯PVDF介电常数的1.75倍. 而选用钛酸钡纳米粉体填料, 填充量为10% (体积分数)时, 复合材料的介电常数为纯PVDF介电常数的1.60倍[25], 以上结果表明相比零维的纳米粒子, 一维纤维状填料可以在较低填充量下对复合材料的介电常数实现较大的提高. 采用Maxwell-Garnett模型对其进行拟合[26], 图8为不同填充量ST NF—OH/PVDF复合材料的室温1 kHz介电常数测量值和数值模拟. 图 7 室温条件下不同填充量(体积分数) ST NF—OH/PVDF复合材料的(a)介电常数和(b)介电损耗随频率的变化 Figure7. Frequency dependence of the dielectric constant (a) and loss tangent (b) of ST NF—OH/PVDF composites with various concentrations (volume fraction) of filler.
图 8 不同填充量ST NF—OH/PVDF复合材料的介电常数测量值和数值模拟 Figure8. Dielectric constant measurement and numerical simulation of ST NF—OH/PVDF composites with different loading.
表2前期文献报道的PVDF基复合材料的储能密度与本文实验结果比较 Table2.Comparison of the energy storage density of PVDF-based composite materials reported in previous literatures and the experimental results in this paper.
图 10 (a)室温条件下不同ST NF—OH填料复合材料的P-E曲线; (b)不同ST NF—OH填料的复合材料的储能密度、放电效率随电场的变化 Figure10. (a) P-E curves and (b) the efficiency and energy storage density of ST NF—OH/PVDF composites with various concentration (volume fration) fillers.
为了比较ST NF羟基化表面改性前后对复合材料储能性能的影响, 对羟基化处理前后复合材料的储能进行了测试, 结果发现: ST NF填充量为2.5% (体积分数)复合材料的的耐击穿场强仅为2300 kV/cm, 储能密度为3.73 J/cm3, 而羟基处理后, ST NF—OH填充量为2.5% (体积分数)时, 复合材料的耐击穿场强为3850 kV/cm, 储能密度为7.96 J/cm3, 为ST NF/PVDF复合材料密度的2.13倍. 相比ST NF/PVDF复合材料, ST NF—OH/PVDF复合材料表现出更高的储能密度, 这是因为表面羟基化处理后, 填料表面羟基与F键两者可以相互作用形成氢键, 可以改善填料在聚合中的分散、结合情况, 从而提高复合材料的耐击穿场强和储能性能.