1.Science and Technology on Microwave Imaging Laboratory, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China 2.University of Chinese Academy of Science, Beijing 100049, China 3.School of Electronic Engineering, Xidian University, Xi’an 710126, China
Fund Project:Project supported by the Aerospace Information Research Institute, Chinese Academy of Sciences (Grant No.Y910340Z2F)
Received Date:06 April 2020
Accepted Date:04 June 2020
Available Online:12 June 2020
Published Online:05 October 2020
Abstract:Generating low-frequency electromagnetic waves based on high-frequency antenna and illuminating targets with multi-band signals can be an effect way that can not only reduce the physical dimension of a low frequency antenna, but also improve the performance of radar detection. Combining the electromagnetic wave doppler effect principle and the array antenna architecture, a method of generating a low-frequency signal around the illuminated target is proposed based on the controlling of array antenna parameters, including array radiation element signal timing, phase and element spacing. The principles of array parameter design are described. Composite signals are simulated respectively under two typical geometric relationships between targets and array antenna, target located along the array direction and in the direction of 45° scanning angle. The peak sidelobe ratio (PSLR) and integral sidelobe ratio (ISLR) are used to evaluate the quality of the composite signals. Aiming at practical applications, the effects of array element spacing error, phase error and target location error on the composite signal are simulated and analyzed. Under the condition of sparse uniform array, the influence of the radiation element spacing on the composite signal is analyzed. The simulation results show that the harmonic components of the composite signal increase with the radiating element spacing error and phase error growing. Keywords:frequency transformation/ array antenna/ doppler effect/ thinned array
当相背运动速度接近电磁波速度c时, 接收信号频率将会明显降低. 如图2所示,若雷达与目标的初始距离为1 km, 发射载频1 GHz脉宽为0.5 μs的信号, 同时以速度$\displaystyle\frac{{21}}{{29}}c$远离目标运动, 则多普勒频率为–600 MHz, 目标区接收信号频率为400 MHz, 脉宽为1.25 μs. 图 2 多普勒效应中的发射/接收信号波形与频谱 (a) 发射信号波形; (b) 接收信号波形; (c) 发射信号与接收信号频谱 Figure2. The emission/received signal waveform and spectrum of doppler effect: (a) The emission signal waveform; (b) the received signal waveform; (c) spectrum of the emission/received signal.
22.2.阵列结构合成低频信号原理 -->
2.2.阵列结构合成低频信号原理
根据对电磁波多普勒效应的理解, 将运动雷达发射信号的过程在时间维分解, 让阵列中各辐射单元顺序发射脉冲信号, 利用阵列等效产生高速运动的雷达信号. 对于运动雷达及其发射信号的讨论将基于两个坐标系, 其一是以雷达为原点的运动坐标系S', 其二是以雷达运动初始时间、位置为原点的空时坐标系S. S' 系的X' 轴、Y' 轴和Z' 轴均为空间坐标轴, S系的X轴为空间坐标轴, T轴为时间轴. 在初始时刻$t = 0$, S' 系与S系的原点重合. 在雷达运动过程中, 雷达始终位于S' 系的原点位置, 且S' 系的X' 轴与S系的X轴始终重合. 两个坐标系之间的时间关系符合钟慢效应[13]. 图3为在S系中对运动雷达发射信号过程的分解. 在$t = 0$时刻, 雷达位于X轴的零点, 并开始以速度v沿着X轴负方向运动, 同时向X轴正方向发射信号. 目标位于X轴正方向的远处. 图 3 空时坐标系中对运动雷达发射信号过程分解的示意图 Figure3. Schematic diagram of decomposition of moving radar in space-time coordinate system.
图5为目标在阵列方向时的阵列天线结构, 辐射单元${T_0}$至${T_{N - 1}}$以辐射单元间隔d依次向左排布. 接收装置位于目标区, 记为${T_r}$, 且与阵列近端之间的距离为${R_0}$. 图 5 目标在阵列方向时的阵列天线结构 Figure5. Array antenna structure when the target being in the array direction.
阵列长度由雷达发射信号脉宽的展宽量和辐射单元发射信号脉宽共同决定. 若各辐射单元的信号首尾相接, 即辐射单元发射信号的脉宽$\displaystyle{\tau _0} = \frac{{c + v}}{{cv}}d$, 则合成信号由多段1 GHz信号拼接构成. 若设置阵列导致的辐射单元信号脉宽展宽量为0.833 μs, 则雷达发射信号脉宽0.33 μs, 辐射单元信号脉宽1.2 ns, 合成信号脉宽0.834 μs, 阵长105 m, 辐射单元总数700, 仿真此时目标区的合成信号. 由图6可发现, 当辐射单元信号首尾相接时, 合成信号中谐波的影响明显. 图 6 辐射单元信号首尾相接时合成信号的波形与频谱 (a) 合成信号波形; (b)合成信号频谱 Figure6. Waveform and spectrum of the composite signal when signals of radiating elements being connected end to end: (a) Waveform of the composite signal; (b) spectrum of the composite signal.
且对于相位调制频率的选取, 应当尽可能使得信号的重叠部分中, 各辐射单元信号相位调制的时间点相互错位, 从而等效合成信号的相位调制时间间隔小于${1}/{{{f_{\rm pm}}}}$. 设置雷达发射信号脉宽的展宽量为0.833 μs, 则合成信号脉宽为1.67 μs. 若辐射单元信号脉宽满足(14)式, 则可得阵长为105 m, 辐射单元发射信号脉宽0.833 μs. 设置辐射单元发射信号相位调制频率81 MHz, 则相位步进$\displaystyle – \frac{{22}}{{27}}{\text{π}}$. 合成信号的包络移动情况、波形与频谱如图7所示, 其中图7(a)以目标区接收信号的时间为横坐标, 以辐射单元的编号为纵坐标, 图中的每一行表示一个辐射单元信号经过目标区的时间. 图 7 辐射单元发射信号相位调制频率81 MHz时合成信号的包络移动情况、波形与频谱 (a) 合成信号的包络移动情况; (b) 合成信号的波形; (c) 合成信号的频谱 Figure7. Envelope movement, waveform and spectrum of the composite signal when the phase modulation frequency of the radiating element signal being 81 MHz: (a) Envelope movement of the composite signal; (b) waveform of the composite signal; (c) spectrum of the composite signal.
当辐射单元脉宽为0.833 μs时, 从目标的角度描述各辐射单元信号的包络通过目标位置的时间, 可等效雷达信号包络的移动, 这与雷达成像[16]中的距离徙动信号类似. 本文采用文献[17]中的峰值旁瓣比和积分旁瓣比来评价合成信号的质量. 当辐射单元信号相位调制频率为81 MHz时, 合成信号频谱峰值旁瓣比为–28.65 dB, 积分旁瓣比为–19.26 dB. 高的相位调制频率可增加辐射单元发射信号脉冲内相位调制的次数, 抑制载波能量, 增大低频信号, 使得合成信号更接近所需的低频信号. 但是在实际条件下, 辐射单元发射信号带宽一般小于载波频率的10%, 即载波频率1 GHz时, 辐射单元能够工作的频率范围为$\left[ {0.95, 1.05} \right]\;{\rm{GHz}}$. 图8给出了相位调制频率为81和39 MHz时辐射单元发射信号的频谱, 显然当相位调制频率取81 MHz的情况下, 发射信号频谱散布的范围较大, 其有效信号能量辐射会受到限制. 图 8 相位调制频率为81 MHz和39 MHz时辐射单元信号的频谱 (a) 相位调制频率为81 MHz时辐射单元信号的频谱; (b) 相位调制频率为39 MHz时辐射单元信号的频谱 Figure8. Spectrums of the radiating element signal when the phase modulation frequency being 81 MHz and 39 MHz: (a) Spectrum of the radiating element signal when the phase modulation frequency being 81 MHz; (b) spectrums of the radiating element signal when the phase modulation frequency being 39 MHz
为减小带宽限制对辐射单元发射信号的影响, 保持阵列结构与信号其他参数不变, 将相位调制频率降低至39 MHz, 则相位步进$\displaystyle – \frac{{10}}{{13}}\pi $. 此时100 MHz带宽内信号有效的频谱分量较多, 信号合成受到带宽影响减小. 因为各辐射单元信号的形式相同, 所以可用辐射单元${T_{\rm{0}}}$的信号等效其他辐射单元信号, 由此可得阵列的发射信号. 将归一化处理的阵列发射信号频谱和合成信号频谱进行对比, 可分析发射信号的能量利用率. 当辐射单元发射信号的相位调制频率为39 MHz时, 合成信号的波形、频谱以及阵列发射信号与合成信号的频谱对比如图9所示. 合成信号频谱的峰值旁瓣比为–23.09 dB, 积分旁瓣比为–14.45 dB, 低频信号在合成信号中的能量占比为96.54%. 在频谱对比图中, 合成信号的低频分量为–3.45 dB(67.22%). 图 9 辐射单元发射信号相位调制频率39 MHz时合成信号的波形、频谱以及阵列发射信号与合成信号的频谱对比图 (a) 合成信号的波形; (b) 合成信号的频谱; (c) 阵列发射信号与合成信号的频谱对比 Figure9. Waveform, spectrum of the composite signal and the spectrum comparison between the signal transmitted by the array and the composite signal when the phase modulation frequency of radiating element signals being 39 MHz: (a) Waveform of the composite signal; (b) spectrum of the composite signal; (c) spectrum comparison between the signal transmitted by the array and the composite signal.
23.2.目标在45°扫描角时 -->
3.2.目标在45°扫描角时
在实际应用中, 目标一般不会位于阵列方向, 所以为了符合实际需要, 设计波束扫描角[18]为45°的阵列结构天线. 图10为波束扫描角为45°时的阵列天线结构. 在空间坐标系中, 辐射单元以间距d从原点开始沿X轴负方向排布, 目标与阵列近端之间的距离为${R_0}$, 目标在X轴和Y轴上的投影分别记为${x_0}$和${y_0}$. 图 10 波束扫描角为45°时的阵列结构 Figure10. Array structure when the beam scanning angle being 45°.
表1波束扫描45°时合成信号的仿真参数 Table1.Simulation parameters of the composite signal when beam scanning angle being 45°
图 11 波束扫描角为45°时合成信号的波形、频谱以及阵列发射信号与合成信号的频谱对比图 (a) 合成信号波形; (b) 合成信号频谱; (c) 阵列发射信号与合成信号的频谱对比 Figure11. Waveform and spectrum of the composite signal and the spectrum comparison between the signal transmitted by the array and the composite signal when the beam scanning angle being 45°: (a) Waveform of the composite signal; (b) spectrum of the composite signal; (c) spectrum comparison between the signal transmitted by the array and the composite signal
4.阵列结构误差分析24.1.辐射单元间距误差和相位误差 -->
4.1.辐射单元间距误差和相位误差
在实际应用的情况下, 分析辐射单元间距误差和相位误差[19]的影响是必要的. 若辐射单元间距误差(单位: m)服从正态分布$N\left( {0, 1 \times {{10}^{ - 4}}} \right)$, 辐射单元信号相位误差(单元: rad)服从正态分布$N( {0, {{{{\text{π}}^2}}}/{{{2^{10}}}}})$, 则误差的分布与合成信号的波形、频谱如图12所示. 图 12 辐射单元间距误差和相位误差的分布直方图 (a)辐射单元间距误差的分布直方图; (b) 相位误差的分布直方图 Figure12. Distribution histogram of radiating element spacing error and phase error: (a) Distribution histogram of radiating element spacing; (b) distribution histogram of phase error.
在表1所示仿真参数的基础上, 向合成信号中引入上述误差, 则合成信号的波形与频谱如图13所示. 图 13 受到辐射单元间距误差和相位误差时合成信号的波形与频谱 (a) 合成信号的波形; (b) 合成信号的频谱 Figure13. Waveform and spectrum of the composite signal subjected to radiating element spacing error and phase error: (a) Waveform of the composite signal; (b) spectrum of the composite signal.
虽然辐射单元发射信号的相位根据目标位置设定, 但是实际情况下目标并不一定会位于预定位置, 因此需要讨论目标偏离预定位置对合成信号的影响. 根据表1所示参数仿真, 并使得实际目标在波束扫描45°方向上偏离预定位置, 则合成信号的仿真结果如图14和图15所示. 图 14 实际目标距离阵列近端50 km时合成信号的波形、频谱与合成信号慢时间相位和低频信号相位的差值 (a) 合成信号的波形; (b) 合成信号的频谱; (c) 合成信号慢时间相位和低频信号相位的差值 Figure14. Waveform, spectrum of the composite signal and slow time phase difference with that of low frequency signal when the actual target being 50 km from the near end of the array: (a) Waveform of the composite signal; (b) spectrum of the composite signal; (c) slow time phase difference with that of low frequency signal.
图 15 实际目标距离阵列近端10 km时合成信号的波形、频谱与合成信号慢时间相位和低频信号相位的差值 (a) 合成信号的波形; (b) 合成信号的频谱; (c) 合成信号慢时间相位和低频信号相位的差值 Figure15. Waveform, spectrum of the composite signal and slow time phase difference with that of low frequency signal when the actual target being 10 km from the near end of the array: (a) Waveform of the composite signal; (b) spectrum of the composite signal; (c) slow time phase difference with that of low frequency signal.