1.College of Physics, Sichuan University, Chengdu 610065, China 2.Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11905152, 11775154) and the Post-doctoral Research and Development Fund of Sichuan University, China (Grant No. 2020SCU12068)
Received Date:09 April 2020
Accepted Date:02 June 2020
Available Online:16 June 2020
Published Online:05 October 2020
Abstract:Resonant magnetic perturbation (RMP), generated by externally applied magnetic perturbation coils, is an important method of controlling plasma edge localized mode. Many experiments have shown that RMP can effectively mitigate/suppress edge localized mode, but its intrinsic physical mechanism is not completely clear. The response of plasma to RMP is the key to understanding the RMP physics. In the presence of RMP, the circumferential symmetry of the tokamak magnetic field will be broken, forming a new three-dimensional(3D) equilibrium, and this process is called the plasma response to RMP. Currently, the parameter range and control effect of RMPs to control edge localized mode on different devices are quite different, implying that the plasma response to RMPs has different response results in different parameter ranges on different devices. Therefore, it is necessary to study the RMP response characteristics of specific devices.In this work, the effect of the plasma rotation frequency on the linear response process of plasma to the resonant magnetic perturbations is investigated in the framework of MARS-F in the HL-2A configuration, and the physical reasons are analyzed in detail. It is found that the shielding and amplification effects in plasma response do not change linearly with plasma rotation frequency, since the plasma resistivity plays an important role. The shielding effect for the magnetic perturbation on the rational surface is enhanced with the increase of the rotation frequency in the high rotation frequency range. However, this rule no longer holds true in the low rotation frequency range due to the deviation of the strongest shielding position from the rational surface caused by the plasma resistivity. As for the amplification effect, the resistivity weakens the amplification effect of plasma response due to the dissipation of induced current. The variation trend of the amplification effect with the rotation frequency and resistivity is consistent with that of the core-kink response, which indicates that the amplification effect of the magnetic perturbation is mainly caused by the core-kink response. Keywords:tokamak/ plasma response/ rotation frequency/ resonant magnetic perturbations/ resistive effect
图 2 HL-2A等离子体平衡的径向剖面 (a)归一化密度; (b)安全因子; (c)归一化等离子体环向旋转; (d)归一化等离子体电阻率 Figure2. The radial profiles of the plasma equilibrium used in this study: (a) The normalized density; (b) the safety factor; (c) the plasma toroidal rotation, normalized to the Alfven frequency at the plasma centre; (d) the normalized plasma resistivity (vertical lines indicate the radial locations of rational surfaces for q = 2, 3, 4).
其中, $ {J}_{{\rm{s}}}=J\left|\nabla s\right| $是表面雅可比, $ {b}_{n} $为扰动磁场的法向分量. $ {b}^{1} $的单位为高斯(1 G = 10–4 T), 本质上是扰动磁通函数, 其极向谐波在确定磁岛宽度时比法向分量$ {b}_{n} $更有实际意义. 图3给出了RMP上下线圈电流相位差为180°(奇宇称)时, 真空径向场与总径向场的极向谐波幅值在极向谐波数m和归一化小半径$ {\psi }_{{\rm{p}}}^{1/2} $平面的分布. m为负数的谐波代表非共振谐波, 有理面的位置($ q=m/n $)用红色“+”号表示. 在图3(a)所示的真空场极向谱中可以看到, RMP磁场在极向模数m的正负区间呈对称分布, 而沿着小半径方向呈现由边缘到芯部逐渐减弱的趋势. 对比图3(a)和图3(b), 在共振区域(m > 0), 总径向场幅值在有理面附近相较于真空场明显减小, 发生屏蔽效应[12], 而在非有理面上的总径向场幅值相较于真空场则大大增加, 发生共振场放大效应(resonant field amplification, RFA)[23,24]; 在非共振区域(m < 0), 总径向场与真空场相比模谱形状几乎没有变化. 图 3 奇宇称时(a)真空径向场与(b)总径向场的极向谱 Figure3. Comparison of the poloidal spectra in the full plasma region, between (a) The vacuum field and (b) the total field including the plasma response, for the odd parity of the coil current.
接下来在奇宇称情况下研究等离子体环向旋转频率变化对等离子体响应的影响. 利用第二部分介绍的平衡, 在其他条件不变的情况下保持旋转剖面形状不变, 仅改变旋转频率大小. 对于理想等离子体响应($ {\eta }_{0}=0 $), 如图5所示, 不论旋转如何变化, 扰动场的各个极向傅里叶分量(m = 2, 3, 4)在对应有理面上都会发生明显屏蔽, 由于理想情况下有理面上已经基本对扰动场实现了完全屏蔽, 故增加旋转并不会进一步增强屏蔽效应; 但扰动场的极向傅里叶分量振幅的最大值随旋转增大而不断减小, 说明环向旋转会削弱等离子体响应的放大效应, 这主要是因为环向流对等离子体具有一定的致稳作用, 抑制了响应中不稳定性的增长从而使放大效应减弱[26]. 图 5 理想等离子体响应($ {\eta }_{0}=0 $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置 Figure5. The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in ideal plasma response $ ({\eta }_{0}=0) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.
对于非理想等离子体响应, 如图6所示, 对于不同极向模数的分量, 在旋转较大时(图中偏蓝色的线), 扰动场在有理面上具有较好的屏蔽, 但是, 随着旋转减小(图中偏红色的线), 扰动场屏蔽效果最强处的位置较有理面(竖直虚线处)会产生一定的偏移, 导致扰动场在有理面上的屏蔽效应减弱, 甚至有理面上的总径向场有可能大于真空场幅值; 同时, 旋转越小、越靠近等离子体边缘的有理面附近, 偏移越大. 这是因为环向旋转可以增强等离子体对扰动场的屏蔽效应, 当旋转足够大时, 旋转增强屏蔽的作用占主导, 电阻降低屏蔽的作用较弱[27]. 当旋转较小时, 旋转的屏蔽作用减弱, 电阻降低屏蔽的作用占主导, 电阻越大, 屏蔽效果最强处的位置较有理面的偏移越大, 有理面上的屏蔽效果越弱[12,27]. 在靠近等离子体边缘区域, 旋转频率较芯部更小, 而电阻值较芯部更大, 所以m = 4的分量的屏蔽效果最弱. 此外, 扰动场的极向傅里叶分量振幅的最大值随旋转增加呈现出先增大后减小的特征, 这与理想等离子体响应中的放大效应有所不同, 具体物理原因将结合图7, 图8和图9做进一步分析. 图 6 电阻等离子体响应($ {\eta }_{0}=1.7524\times {10}^{-8} $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置 Figure6. The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in resistive plasma response $ ({\eta }_{0}=1.7524\times {10}^{-8}) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.
图 7 不同电阻值下有理面上总径向场幅值随旋转频率的变化 (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. 图中绿色虚线代表真空场条件下对应分量在有理面上的幅值 Figure7. The amplitude of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field on the rational surfaces with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. The green dashed lines are the corresponding amplitude of the resonant poloidal Fourier harmonics produced by RMP coils on the rational surfaces.
图 8 不同电阻值下总径向场的极向傅里叶分量最大值随旋转频率的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的最大值 Figure8. The maximal amplitude of the poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding maximal amplitude of the poloidal Fourier harmonics produced by RMP coils.