1.School of Physics and Electronics, Shangrao Normal University, Shangrao 334001, China 2.Engineering Technology Research Center of Intelligent Electric Vehicle Components of Jiangxi Province, Shangrao 334001, China 3.College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
Abstract:The study about the wave mechanism of magnetized dusty plasmas has important value to related experiment, industrial processing and exploring celestial space. The linear and nonlinear fluctuation characteristics of the nonuniform magnetized dust plasma system are researched in this paper. For the homogeneous external magnetic field and the nonuniform environment with density and temperature gradients, a two-dimensional nonlinear dynamic magnetoplasma equation is derived considering the strong impact between dust and neutral particles. The linear dispersion relation is obtained by the linearized method. There are both the damping wave causing by strong collision and the harmonic wave by particle drift. Employing the typical numerical parameters for analysis, the results display that the quantum parameter modifies the system lengths; the real wave frequency is proportion to the drift frequency; the imaginary wave frequency has complex relationship with the collision frequency between dust and neutrals, and the collision of particles causes the dissipation effects to the system. Besides, the analytical solutions of drift shock wave and explosive wave are solved by function change method. The variation about the electrostatic potential with the main physical parameters is discussed in detail. It is shown that the strength of the electrostatic shock wave and the width of the explosive wave increase with increasing the dust density and magnetic field intensity, decrease with increasing the collision frequency, change with the drift velocity. When the space-time phase is small, the electrostatic potential changes quickly; once big enough, the potential tends to be stable value and reaches stable state eventually. Finally, the stability of the system is discussed. It is found that the dusty charge, quantum parameter, drift velocity all appear in the disturbed solution. All these results in the paper show that the strong collision effect, quantum effect, particle drift and magnetic field all play important role to the generation, evolution and stability of drift waves. Keywords:dusty plasma/ drift wave/ dispersion relation/ stability
波的频率$ \omega $是波数k和倾斜角$ \theta $的函数, 随k和$ \theta $的变化比较复杂; 分母中都有量子参量$ H_{\rm e} $, 说明量子性影响了整个系统的波动尺度大小. 在实频(14)式中, 实频$ {\rm {Re}}\omega $与漂移频率成正比关系, 引起振荡的谐波. 在虚频(15)式, 虚频$ {\rm {Im}}\omega $与尘埃和中子间的碰撞频率有比较复杂的关系, 由于虚频引起阻尼波, 说明碰撞引起了系统的耗散效应. 利用(11)式中的数值参量, 并取$\theta = {{\text{π}}}/{3}$, 数值模拟分析色散频率随着几个主要物理量的变化. 在实色散频率(14)式所对应的图1—图4中, 绝对实频率的值$ |{\rm {Re}}\omega| $都随着k的增大, 刚开始时增大, 在达到最大值后又减小. 图1显示了实频率随着漂移速度v的增大而增大的情况. 图2表明实频率随着倾斜角$ \theta $的变化比较复杂: 随着角度的增加, 绝对频率开始时增大, 在达到最大值后减小, 而后增大又减小; 在$ \theta = {\text{π}}/2 $附近变化很快, 远离则变化小. 图3显示了实色散频率随着尘埃密度$ n_{\rm d} $的增大而增大的情况. 注意到$ n_{\rm d} $增大则$ n_{\rm e} $减小, 而归一化量子参量$ H_{\rm e} $与$ n_{\rm e} $成正比, 因此相当于$ H_{\rm e} $减小. 随着$ H_{\rm e}\rightarrow 0 $, 色散频率逐渐趋于一个稳定值. 图4中实色散频率随着磁场强度$ B_0 $的增大, 而略有增大. 图 1 (14) 式实色散频率随着波数k和漂移速度v的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式 Figure1. Variation of the real dispersion frequency with the wave number k and drift velocity v determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).
图 2 (14)式实色散频率随着波数k和倾斜角$ \theta $的变化, 对应的参量见(11)式 Figure2. Variation of the real dispersion frequency with the wave number k and obliqueness angle $ \theta $ determined by Eq. (14), and the parameters given in Eq. (11).
图 3 (14)式实色散频率随着波数k和尘埃密度$n_{\rm d}$的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式 Figure3. Variation of the real dispersion frequency with the wave number k and the dust density $n_{\rm d}$ determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).
图 4 (14)式实色散频率随着波数k和磁场强度$ B_0 $的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式 Figure4. Variation of the real dispersion frequency with the wave number k and magnetic field $ B_0 $ determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).
对虚色散频率(15)式, 图5反映了虚色散频率的绝对值$ |{\rm {Im}}\omega| $随着碰撞频率$ \nu_{\rm {dn}} $的增大, 刚开始减小, 在$ \nu_{\rm {dn}}\approx2.5\times10^6\ \rm{Hz} $附近达到最小值, 而后则增大. 随着k的增大而增大, 并趋于稳定值. 虚频率受其他参量的影响, 变化情况与实频率相似. 图 5 (15)式虚色散频率随着波数k和碰撞频率$ \nu_{\rm {dn}} $的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式 Figure5. Variation of the imaginary dispersion frequency with the wave number k and the collision frequency $ \nu_{\rm {dn}} $ determined by Eq. (15) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).
$ k_{2} $和$ k_{3} $是正的常数, $ \xi \!=\! -\! \dfrac{{\sqrt{\! -g_{4}(10 g_{2}k_3\!+\!g_{3})}}k_{2}}{10 g_{2}k_3+g_{3}} y+ k_{2}z-k_{3}t $. 对(18)式中尘埃声波的电势解$ \varPhi_{1} $, 选用(11)式中的有关数值参量, 模拟分析尘埃密度$ n_{\rm d} $、碰撞频率$ \nu_{\rm {dn}} $、尘埃漂移速度v和磁场强度$ B_0 $的影响. 从图6—图9所示的演化过程可见, 冲击波的强度随着尘埃密度的增大而增强, 亦即随着量子参量$ H_{\rm e} $的减小而增强; 随着漂移速度和磁场强度的增大而增强; 但是随着碰撞频率$ \nu_{\rm {dn}} $的减小而增强. 图 6 (18)式冲击波$ \varPhi_1 $随着尘埃密度$ n_{\rm d} $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 1 $, 其他参量见(11)式 Figure6. Variation of the shock wave $ \varPhi_1 $ with the dust density $ n_{\rm d} $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 1 $. Other parameters are given in Eq. (11).
图 7 (18)式冲击波$ \varPhi_1 $随着碰撞频率$ \nu_{\rm {dn}} $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 2 $, 其他参量见(11)式 Figure7. Variation of the shock wave $ \varPhi_1 $ with the collision frequency $ \nu_{\rm {dn}} $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 2 $. Other parameters are given in Eq. (11).
图 8 (18)式冲击波$ \varPhi_1 $随着漂移速度v的变化. 对应的参量为$ k_{2} = 5 $, $ k_{3} = 2 $, 其他参量见(11)式 Figure8. Variation of the shock wave $ \varPhi_1 $ with the drift velocity v by Eq.(18) for $ k_{2} = 5 $, $ k_{3} = 2 $. Other parameters are given in Eq. (11).
图 9 (18)式冲击波$ \varPhi_1 $随着磁场强度$ B_0 $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 1 $, 其他参量见(11)式 Figure9. Variation of the shock wave $ \varPhi_1 $ with the magnetic field $ B_0 $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 1 $. Other parameters are given in Eq. (11).