Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11875094)
Received Date:14 March 2020
Accepted Date:24 May 2020
Available Online:12 June 2020
Published Online:05 October 2020
Abstract:As a compact and high power microwave source, the competitions among various modes are prone to appear in the initial stage of the development of the radiated electromagnetic field in a magnetically insulated transmission line oscillator (MILO). If the mode competitions are not controlled effectively, the output characteristics of the MILO may decline in the end. As is well known, the operating mode of MILO is generally designed on the π mode of the TM00 mode and the coaxial disk-loaded waveguide is usually adopted as a slow-wave structure for beam-wave interaction in MILO. Therefore from the dispersion relations between the electron beam and the lower order electromagnetic modes(including TM00, TM01 and HEM11 modes) in the slow-wave structure, the characteristics and possible suppression methods of the three kinds of mode competitions are analyzed simply. The first kind mode competition is between the different axial modes of the fundamental TM00 mode. In this case, the electromagnetic field of the competition mode is also axially symmetric and its frequency is slightly lower than that of the π mode. The second is the competition between the TM00 and higher order TM01 mode. In this case, the competition frequency is rather higher than that of the π mode (TM00). The third is the competitions between the TM00 and low order asymmetric HEM11 modes. In this case, the competition frequency is slightly higher than that of the main mode. Appropriately choosing the radii of the anode vanes, the number of the anode cavity and the load length of the cathode, the corresponding mode competition intensity can be weakened. Based on the obtained results above and the existing model of the MILO, a compact high output power L-band MILO is proposed. Numerical studies of the mode competitions and output characteristics are carried by using the three dimensional particle-in-cell code. Cold-cavity test shows that in the low frequency range, the easily stimulated electromagnetic modes are the π mode of TM00 and HEM11 modes with frequencies of 1.61 GHz and 1.77 GHz, respectively. The numerical results of hot-cavity verify that the competition in the initial stage comes mainly from the asymmetric HEM11 mode due to the fact that there exists the strut in the output region, the Cartesian coordinates are adopted during the simulation, and totally symmetry cannot be guaranteed. In addition, electron beam emission from the cathode is not ideally even. But stable and high output microwave power is obtained in the end in the L-band MILO by being optimized. The output power and efficiency are 8.1 GW and 18% respectively, and the mode purity reaches about 97%. Keywords:magnetically insulated transmission line oscillator/ mode competition/ numerical simulation
对于基模与高阶模TM01之间的竞争, 此时竞争模式TM01的电磁场分布也具有轴对称性, 只是轴向电场沿径向正负交替一次, 如图4所示. 由色散关系图2可以看到, 点C为电子束和TM01模色散曲线的交点, 其对应的共振频率远高于点A对应的频率, 且交点位置随电子束纵向速度(电压)变化相对较为敏感, 因此激发难度相对较大. 但由于此时束波共振点对应的本征模的群速度小于零, 如果器件品质因数较高或者互作用区较长, 器件运行初期有可能被激发. 图 4 同轴盘荷波导中TM01的轴向电场在横截面的等高图 Figure4. The contour plots of Ez of the TM01 mode in the coaxial disk-loaded waveguide in the radial cross section.
对于非对称模式HEM11模与基模的竞争, 由图2可以看到, HEM11各纵向模式的频率仅略高于与之对应的TM00模的频率, π模附近的频率相差最小(图中点A和点B). 其中, HEM11模在点B处对应的纵向电场在纵向和横向截面分布的等高图如图5(a)和图5(b)所示. 可以看到, HEM11模的轴向电场Ez不再具有轴对称性, 而是沿角向正负交替一次. 图 5 同轴盘荷波导中HEM11(π模)的轴向电场在 (a) 纵向中心截面和(b)横截面的等高图 Figure5. The contour plots of Ez of the HEM11(π mode)in the coaxial disk-loaded waveguide in the (a) Axial and (b) radial cross section.
为了计算波束互作用区中的共振频率, 将上述MILO的互作用区两端封闭, 同时沿z方向在第四和第五叶片之间加载一个短脉冲宽频信号来激励电磁场振荡. 图7给出了上述激励信号在MILO互作用区中点D的位置激发出的电场频谱图. 由图7可以看到: 在容易被激发的频率中, 较低的两个频率分别为1.61和1.77 GHz. 图 7 短脉冲宽频信号激发后MILO互作用区中点D处电场的频谱图 Figure7. The oscillation frequency of the Ez stimulated in cold cavity at point D.
图8(a)、图8(b)和图9(a)、图9(b)分别给出了频率分别为1.61和1.77 GHz时对应的纵向电场在XZ和XY两个截面分布的等高图. 结合前面的分析, 可知这两个频率对应的电磁场模式分别是TM00模和HEM11模的π模. 由此可见, 与基模TM00模相同, 对于HEM11模, 与电子束容易产生相互作用的模式也是π模. 图 8 频率为1.61 GHz的纵向电场在 (a) 纵向和(b) 横向截面等高图 Figure8. The contour plots of Ez with the frequency of 1.61 GHz in (a) The axial and (b) the radial cross section.
图 9 频率为1.77 GHz的纵向电场在 (a) 纵向和(b) 横向截面的等高图 Figure9. The contour plots of Ez with the frequency of 1.77 GHz in (a) The axial and (b) the radial cross section.
23.2.热腔的数值模拟及物理分析 -->
3.2.热腔的数值模拟及物理分析
下面, 我们利用全电磁三维粒子模拟程序对给出的如图6所示的L波段MILO的输出性能进行数值模拟, 同时考察初始阶段的模式竞争情况, 其中注入的电子束的平均电压约为510 kV, 对应的电功率约为32.8 GW. 图10(a)—(d)和图11(a)—(d)给出了阳极腔内D点电场和磁场随时间的变化曲线及针对不同时段的FFT变换图. 由图10(a)和11(a)可以看到, 辐射场8.0 ns左右开始起振, 大约22.0 ns达到饱和, 其中在8.0至14.0 ns之间, 存在一个小的峰值. 对电磁场按时间分段做FFT变换, 可以得到, 全时段(0—50 ns)的电磁场的中心频率约为1.6 GHz, 但是可以看到有略高于该频率的小峰值, 提示有一定强度的竞争模式; 初期(8—14 ns)的电磁场的频率约为1.7 GHz, 稳定后(> 14 ns), 电磁场的频率约为1.6 GHz, 频谱比较纯, 略高于该频率的小峰值没有出现. 可见, 在起振后的初始阶段, 存在明显的模式竞争; 大约过10 ns左右, 竞争模式被抑制. 图 10 (a) 阳极腔内观察点D的电场Ez随时间的变化曲线及不同时间窗口(b) 0?50 ns, (c) 8?14 ns和(d) 14?50 ns的FFT变换图 Figure10. (a) Variations of Ez with time at the observation point D in the anode cavity; the corresponding Fourier transform with different time intervals: (b) 0?50 ns; (c) 8?14 ns; (d) 14?50 ns.
图 11 (a) 阳极腔内观察点D磁场By随时间的变化曲线及不同时间窗口(b) 0?50 ns, (c) 8?14 ns和(d) 14?50 ns的FFT变换图 Figure11. (a) Variations of By with time at the observation point D in the anode cavity, and the corresponding Fourier transform with different time intervals: (b) 0?50 ns, (c) 8?14 ns (d) 14?50 ns.
图12(a)—(d)给出了初始阶段不同时刻互作用区D点所在横截面轴向电场的等高图. 可以看到, 轴向电场沿角向的分布由初期的非轴对称分布, 逐渐转变为轴对称分布. 由轴向电场的分布特征和共振频率, 结合冷腔计算结果, 可以确定, 在初始阶段, 非对称模式HEM11模与TM00模产生竞争; 由于加载了电子束, 因此与冷腔分析时的结果进行比较, TM00模和HEM11模的频率由冷腔时的1.61和1.77 GHz分别降为1.6和1.7 GHz. 图 12 初始阶段不同时刻互作用区横截面轴向电场的等高图 (a) t = 12.171 ns; (b) t = 13.094 ns; (c) t = 14.944 ns; (d) t = 16.793 ns Figure12. Contour plots of Ez in the interaction region at different times at the initial stage.
由图13(a)和图13(b)给出了饱和时互作用区中轴向电场在纵向和横向截面的等高图, 可以看到, 饱和时轴向电场在互作用区的阳极腔中正负交替排列(π模场分布), 沿角向呈轴对称分布, 与TM00模的场分布完全一致, 因此, 可以确定器件稳定后互作用区的工作模式为TM00模的π模. 图 13 饱和时互作用区轴向电场在(a) 纵向截面和(b) 横向截面的等高图, t = 45.727 ns Figure13. Contour plots of Ez in the (a) Axial and (b) radial cross section in the interaction region at saturation.
由于是在直角坐标系中建立的三维计算模型, 加上输出区还有支撑杆, 因此互作用区很难实现完全轴对称. 同时, 由于阴极电子发射面大, 电子发射也存在一定的非均匀性, 这些因素使得器件运行初期容易激发HEM11模, 且很难完全抑制. 起振一小段时间后(10 ns左右), 互作用区基模增长加快, 高阶模被抑制. 基于以上分析, 为了提高器件的输出功率和效率, 对器件的参数进行了进一步的优化, 主要调节了互作用区的周期长度和电子束电压, 其他参数保持不变. 模拟结果表明, 当周期长度p为3.1 cm, 注入的电子束的平均电压约为600 kV, 对应电功率约为45 GW时, 器件的输出效率达到了18%. 图14(a)和图14(b)给出了MILO输出周期平均功率随时间的变化曲线以及稳定后输出口电场的FFT变换图. 由图14可以看到, 饱和时输出功率高达8.1 GW, 输出频谱比较纯, 中心频率约为1.552 GHz. 由于MILO的输出区为同轴波导, 输出模式应为同轴TEM模. 图15(a)和图15(b)给出了输出口横截面电磁场分布的箭矢图, 可以看到, 计算所得的电磁场分布确与理想同轴TEM模的分布一致. 利用文献[23]给出的方法, 计算得到了模式纯度约为97%. 图 14 (a) MILO输出周期平均功率随时间的变化曲线; (b)稳定后输出口电场的FFT变换图 Figure14. (a) Time plots of the periodic-average output power of the MILO; (b) the Fourier transform of Ex at the output port.
图 15 电磁场在输出口横向截面分布的箭矢图 (a) 电场; (b)磁场 Figure15. The vector plots of the (a) Electric field and (b) magnetic field in the radial cross section at the output port.