1.Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China 2.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China
Abstract:Soft, thin, skin-integrated electronics, i.e. epidermal electronics, has become a hotspot in biomedical engineering and drawn great attention for their applications in health monitoring, disease diagnosis and therapies. However, soft powering system is still a challenge for epidermal electronics, since the thickness and weight of the existing flexible energy harvesting and storage devices are very hard to meet the requirements of epidermal electronics. Here we present a stretchable and flexible self-powering epidermal electronic device based on rubbery piezoelectric composites formed by a ternary blend of PDMS, lead zirconate titanate (PZT) and graphene. The mixed PZT rubber is soft, ultra-thin and light weight and intrinsically stretchable. By combining soft PDMS substrate and advanced mechanics designed interdigital electrodes/interconnects, a stretchable and skin-integrated device for tactile sensing is realized. The soft device can not only accurately measure a board range of force from 2.84 kPa to 11.72 kPa but also exhibit great flexibility that can maintain stable performance under various mechanical deformations, such as bending, stretching and twisting. On-skin demonstration tests reveal that this self-powering device can clearly distinguish the differences among mechanical stimulations such as touching, poking, tapping and hitting. Furthermore, the self-powering nature of these devices allows energy to be harvested from daily body actives, for instance, hard touching by hand can lighten up to 15 light-emitting diodes. Keywords:piezoelectric materials/ graphene/ flexible electronics/ wearable devices
其中, $ \delta $为应变, T为应力, D为电位移, E为电场强度, s为弹性柔量, $ \varepsilon $为介电常数, d为压电系数. 根据逆压电效应, 压电材料也可由输入电能产生压力和形变, 因此压电材料也被广泛应用于致动器、超声换能器、微机器人等领域. 压电材料种类繁多, 而本文研究中主要应用的是使用最为广泛的一种无机压电陶瓷锆钛酸铅(PZT). 与本质柔软的有机压电材料如聚偏二氟乙烯(polyvinylidene fluoride, PVDF)不同, 无机压电材料机械刚度较大, 不易任意变形, 但较为敏感, 压电应变常数高; 与无机压电晶体不同, 无机压电陶瓷材料需要经过电场极化才能产生压电性质. PENG器件通常采用“三明治”结构, 即在压电材料上下分别连接双层电极[38,39], 但由于大面积的电极会减弱柔性器件的机械变形能力尤其是其可拉伸性, 因此平面内的电极结构成为了增强PENG可拉伸性有力的替代选项[40]. Liu等[36]报道了一种基于平面内的叉指电极结构的可贴于皮肤的柔性、可拉伸PENG器件, 应用石墨烯、PZT粉末与硅胶材料混合的三元橡胶实现了压电功能层的柔性化, 并系统探讨了掺杂石墨烯的比例对于阻抗减小、电能输出的影响. 但由于其电极设计缺陷, 仅在一个方向上具有较好可拉伸性, 且由于压电材料层较厚, 其输出电压及电流较低. 本研究将在此基础上进一步优化其平面内电极的力学性能, 应用蛇纹线图案设计(图1(b))使金属电极在平面内两个正交方向上均具有可拉伸性(图1(d)); 简化器件结构的同时减小压电材料层的厚度(图1(a)), 使柔性压电皮肤电子器件总厚度由1.2 mm降低到0.4 mm, 更适于无感穿戴(图1(c))的同时显著提高其在不同压力下的电压及电流输出峰值. 图 1 柔性压电皮肤电子器件 (a) 器件结构图; (b) 蛇纹线结构叉指电极整体、细节及其设计图; (c) 器件贴于皮肤表面的照片; (d) 对器件分别进行纵向、横向拉伸及扭转、弯曲变形的照片; (e) 三元压电橡胶表面形貌的SEM图像; (f) SEM图像范围内C, Si, O, Pb, Zr, Ti元素的能量色散X射线EDX分布图 Figure1. The flexible piezoelectric epidermal electronic device: (a) Explosive view of the structure of the device; (b) overall and detailed photos of the serpentine structured interdigital electrodes and the design; (c) photograph showing the device attached to the skin; (d) photographs showing the device under longitudinal and latitudinal stretching, twisting and bending, respectively; (e) the SEM image of the surface morphology of the graphene/PZT/PDMS ternary piezoelectric rubber; (f) energy dispersive X-ray spectroscopy (EDX) images illustrating the distribution of C, Si, O, Pb, Zr and Ti.