Abstract:Proton radiography is a widely used method to diagnose the electromagnetic field of plasma. When protons pass through the electromagnetic field of plasma, they are deflected by Lorentz force and redistributed on the recorder. How to reconstruct electromagnetic field from the experimental result is an open problem. In this paper, we take the laser-driven capacitor-coil target for example to introduce and compare particle tracing and flux analysis, which are two widely used methods in proton radiography experiment to reconstruct the magnetic field. The capacitor-coil target is an important method to generate strong magnetic field in laser plasma experiment, where the strong current flows in the coil and its producing magnetic field may be larger than kilotesla. Firstly, the theoretical magnetic fields of capacitor-coil target are calculated with current being 10 kA and 50 kA. Secondly, the Geant4 is used to simulate the proton radiographs, where protons with 7.5 MeV pass through the target and the theoretical magnetic field is recorded. Thirdly, the theoretical proton radiographs are analyzed by the flux analysis method, and two magnetic fields are reconstructed. Finally, the theoretical magnetic fields are compared with the reconstructed ones, and the advantages and disadvantages of these two methods are analyzed. Particle tracing rebuilds the geometry distribution of proton source, plasma magnetic field and recorder in experiment, and it needs few assumptions. However, it strongly relies on accurate calculation of theoretical magnetic field and proton trajectory, and it requires to change the magnetic field over and over to achieve a closest result to the experimental proton radiograph. Meanwhile, particle tracing method consumes a lot of computation sources. The flux analysis directly reconstructs the magnetic field from experimental proton radiograph. However, it is only applicable to the case of weak magnetic field, and the error becomes larger for the case of stronger magnetic field. A dimensionless parameter μ is used to estimate the deflection of proton in the magnetic field, which measures the amount of deflection per unit length in the interaction region. The flux analysis method is applicable to the $\mu\ll 1$ regime. Additionally, the target may absorb the proton when the energy of proton is low and produces shadow on the proton radiograph, which leads to some difference between the original magnetic field and the reconstructed result. Keywords:proton radiography/ laser plasma/ generation of magnetic field/ diagnostic technique
3.结果与讨论Geant4计算的质子经过不同磁场后的质子成像结果如图2所示. 图2(a)给出了在没有磁场时, 质子穿过作用区域在成像板上得到的电容线圈靶的正面静态图(阴影). 从质子传输的方向看去, 两个圆形的盘重叠遮挡质子, 在图片上部形成圆形的质子较少的区域; 下垂的线圈的直线和圆弧部分重叠, 在成像板上则只剩下一个细长的矩形区域(红色虚线区域). 这是因为Ni元素对7.5 MeV质子的阻止本领大约为为$ 3.62\!\times\!10^{-21} $ MeV·cm2, 则质子穿过数密度大约为9$ \times10^{22} $ cm–3的重叠的两层固体靶盘(300 μm)后会被完全吸收[29]. 而实验中靶之外区域Ni等离子体的密度[24,25]小于1020 cm–3, 对质子的影响可以忽略, 可以用来诊断这些区域的磁场结构. 图 2 Geant4模拟结果, 图片中的坐标为放大10倍的成像板处的坐标 (a)线圈电流I = 0的静态结果; (b)线圈电流I = 10 kA的结果; (c)线圈电流I = 50 kA的结果. 红色虚线是线圈阴影的位置 Figure2. Simulation results of Geant4, the coordinates are adjusted at the position of detector: (a) Coil current I = 0; (b) coil current I = 10 kA; (c) coil current I = 50 kA. The red dash regions are the position of the shadow of the coils
使用$ I_1 $ = 10 kA 和$ I_2 $ = 50 kA两个电流强度, 相应的沿质子传输路径积分的磁场结构和强度分布的理论值展示于图3中. 当电容线圈通过电流, 产生的磁场呈同心圆状围绕在线圈周围, 随着距离的增加而衰减. 图2 (b)和图2(c)展示了在两个磁感应强度下Geant4 计算的质子成像结果. 根据无电场的洛伦兹力$ { F} = e{ v}\times\; { B} $, 当质子穿过围绕线圈顶端的环状磁场, 质子将被向中间区域聚集. 由于磁场增强, 50 kA 的情况比10 kA 的情况中质子的聚集效应更加明显. 除了质子被聚集到线圈顶端区域, 由于磁场的三维结构还形成了一些细微的结构. 图 3 (a) I = 10 kA的理论磁场结构分布; (b) I = 50 kA 的理论磁场结构分布; (c) I = 10 kA 的理论磁感应强度分布; (d) I = 50 kA的理论磁感应强度分布. 黑色虚线是线圈阴影的位置. 图片中的坐标为放大10 倍后成像板处的坐标 Figure3. (a) Theoretical magnetic strength for I = 10 kA; (b) theoretical magnetic strength for I = 50 kA; (c) theoretical magnetic configuration for I = 10 kA; (d) theoretical magnetic configuration for I = 50 kA. The black dash regions are the position of the shadow of the coils. The coordinates are adjusted at the position of detector
以图2(a)为静态图, 分别从图2(b)和图2(c)反演重构磁场, 质子成像结果和重构磁场都是1001 × 1001的二维矩阵, 质子能量7.5 MeV, 质子源到靶的距离1 cm, 靶到成像板的距离9 cm, 每个间隔对应20 μm. 图4给出了反演重构得到的两种电流强度下沿传输路径积分的磁感应强度和结构分布. 图5(a)和图5(b)展示了线圈遮挡区域及其沿Y 轴方向(–0.15 cm < X < 0.15 cm)的磁场平均值. 对比图3(b)和图4(b) 中的磁场结构, 类似于理论磁场, 重构的磁场结构也是围绕线圈顶端呈同心圆的结构. 但是对比图3 (d)和图4(d)中磁场的强度分布可以发现两者的不同, 这是因为流量分析法限制于基本假设, 只能通过较小范围内的质子分布重构磁场, 但是当磁场较强时, 较大范围内的质子都可能被折射到该区域. 即流量分析法会低估质子被偏折的距离而低估磁场强度. 也会因为只考虑较小范围内的质子偏折, 而造成较大范围内重构磁场和理论磁场强度分布的不同. 图5(a)和图5(b)中红线表示重构的磁场比较离散, 因此图4 中较难得到如图3中那样规则的等高线图. 图5(a)显示, I = 10 kA 的情况中, 在线圈的外部(Y < –0.45 cm)较好地重构了磁场的强度分布, 磁场围绕线圈顶端向远处衰减. 但是在线圈的遮挡区域(–0.15 cm < X < 0.15 cm, Y < –0.45 cm), 重构的磁场与理论磁场相差较大. 这是因为在质子成像中, 由于线圈的遮挡形成空白区域, 而实际线圈包围的内部区域磁场较强, 这造成了重构磁场和理论磁场在这个区域的不同. 但是当磁场较大(I = 50 kA)时, 重构磁场与理论磁场相差都比较大, 无论在线圈的环绕内部还是外部区域重构得到的磁场都远小于理论磁感应强度. 图 4 (a) I = 10 kA的理论重构结构分布; (b) I = 50 kA 的重构磁场结构分布; (c) I = 10 kA 的重构磁感应强度分布; (d) I = 50 kA的理论重构强度分布. 黑色虚线是线圈阴影的位置. 图片中的坐标为放大10 倍后成像板处的坐标 Figure4. (a) Reconstructed magnetic strength for I = 10 kA; (b) reconstructed magnetic strength for I = 50 kA; (c) reconstructed magnetic configuration for I = 10 kA; (d) reconstructed magnetic configuration for I = 50 kA. The black dash regions are the position of the shadow of the coils. The coordinates are adjusted at the position of detector
图 5 (a) I = 10 kA, 沿Y方向的理论磁场和重构磁场在–0.15 cm < X < 0.15 cm 区域平均值的对比; (b) I = 50 kA, 沿Y方向的理论磁场和重构磁场在–0.15 cm < X < 0.15 cm 区域平均值的对比. (a)和(b)中黑色实线是理论值, 红色实线是重构值, 黑色虚线是线圈顶端对应的位置; (c)两种情况下沿Y 方向μ值的对比, 蓝色实线为I = 10 kA的结果, 绿色实线为I = 50 kA 的结果 Figure5. (a) Comparison between the mean theoretical and the mean reconstructed magnetic field for the I = 10 kA case in the region of –0.15 cm < X < 0.15 cm along Y direction; (b) comparison between the mean theoretical and the mean reconstructed magnetic field for the I = 50 kA case in the region of –0.15 cm < X < 0.15 cm along Y direction. The black solid lines are the theoretical results. The red solid lines are the reconstructed line. The black dash lines are the position of the tips of the coils; (c) comparison of μ value along the Y direction between the I = 10 kA and I = 50 kA cases