1.Ministry of Education Key Laboratory of Advanced Microstructure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China 2.School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China 3.School of Space Science and Physics, Shandong Univeristy, Weihai 264209, China
Abstract:Behaviours of light in materials strongly depend on the topological structure of the iso-frequency surface (IFS). The usual materials, of which the unit cell of photonic crystal is made up, are dielectrics, whose IFSs have the same closed topological structure. As a simplest photonic crystal, one-dimensional photonic crystal (1DPC) has attracted intensive attention due to its simple fabrication technique as well as numerous applications. However, in a conventional all-dielectric 1DPC, photonic band gaps (PBGs) for both transverse magnetic (TM) and transverse electric (TE) polarizations will shift toward short wavelengths (i.e. blueshift) as incident angle increases. The underlying physical reason is that the propagating phase in isotropic dielectric will decrease as incident angle increases. The blueshift property of band gap for TM and TE polarization will limit the band width of omnidirectional band gap and the range of operating incident angles in some PBG-based applications, including near-perfect absorption, polarization selection and sensitive refractive index sensing. However, for TM polarization, the propagating phase in a hyperbolic metamaterial (HMM) will increase with incident angle increasing. This special phase property of HMM provides us with a way to flexibly tune the angle-dependent property of band gap in periodic compound structure composed of alternative HMM with open IFS and dielectric with close IFS. In this review, we realize zeroshift (i.e. angle-independent) band gaps as well as redshift band gaps in 1DPCs containing HMMs, which can be utilized to realize near-perfect absorption, sensitive refractive index sensing and polarization selection working in a wide range of incident angles. Keywords:hyperbolic metamaterials/ photonic crystals/ photonic band gaps
由方程(3)可知, 各向同性介质A和B的等频线均为封闭的圆, 如图3所示. 图 3 普通介质A和B的等频线(TM和TE偏振) Figure3. Iso-frequency curves of isotropic dielectrics A and B (TM and TE polarizations).
因此, $\dfrac{{\partial {k_{{\rm{A}}z}}}}{{\partial {k_x}}}$和$\dfrac{{\partial {k_{{\rm{B}}z}}}}{{\partial {k_x}}}$均小于0. 在频率不变时, 随着入射角$\theta $的增大, 介质A和B中的波矢的z分量${k_{{\rm{A}}z}}$和${k_{{\rm{B}}z}}$将减小. 为了维持布拉格条件的成立, 此时频率必须增大, 带隙将向短波方向移动. 此即传统一维光子晶体带隙蓝移的物理原因. 下面给出一个具体的例子. 图4给出了数值计算的一维光子晶体(AB)10的反射谱(TM和TE偏振)随入射角的变化, 其中蓝色虚线为带隙的两个边缘, 由最靠近带隙的反射极小值提取. A和B层的材料分别为SiO2和TiO2, 折射率分别为1.43和2.12[104]. A和B层的厚度满足四分之一波堆条件${n_{\rm{A}}}{d_{\rm{A}}} = {n_{\rm{B}}}{d_{\rm{B}}} = {{{\lambda _0}} / 4}$, 其中, ${\lambda _0} = 410$ nm. 入射和衬底介质分别为空气和BK7玻璃(折射率为1.52). 数值计算方法为传输矩阵法[105]. 图 4 数值计算的一维光子晶体(AB)10的反射谱(TM和TE偏振)随入射角的变化 Figure4. Calculated reflectance spectrum of (AB)10 as a function of incident angle (TM and TE polarizations).
由数值计算结果可知, 带隙的长波长边缘几乎与入射角无关, 然而短波长边缘随入射角有轻微的移动, 这是由于在设计中, 近似条件$ \left| {{\varepsilon _{{\rm{A}}z}}} \right| \gg 1$和${\varepsilon _{\rm{B}}} \gg 1$没有被很好地满足引起的[107]. 若这两个条件能在具体设计中被很好地满足, 带隙的两个边缘均与入射角几乎无关[106]. 由实验测量结果可知, 该结果与数值计算结果符合得较好, 带隙的两个边缘随入射角的移动幅度都比较小. 最后, 图8给出了数值计算结果和实验测量结果的进一步对比[107]. 其中彩色背景代表数值计算的反射谱(TM偏振)随入射角的变化; 黑色空心圆圈代表实验测量的带隙边缘波长, 由最靠近带隙的反射极小值提取. 图 8 含双曲超构材料的一维光子晶体[(CD)2B]3的反射谱(TM偏振)随入射角的变化[107], 其中彩色背景代表数值计算结果, 黑色空心圆圈代表实验测量的带隙边缘(由最靠近带隙的反射极小值提取) Figure8. Reflectance spectrum of [(CD)2B]3 as a function of incident angle (TM polarization)[107]. Background color represents the calculated result. Black hollow circle represents measured gap edge extracted from the reflectance dip.
如引言所述, 对于TM和TE偏振, 传统的全介质一维光子晶体的带隙都是随入射角的增大而蓝移的, 这将导致带隙对不同偏振的区分度不明显, 从而限制了偏振选择的工作角度范围. 在3.2节, 在含双曲超构材料的一维光子晶体中实现了TM偏振的红移带隙和TE偏振的蓝移带隙. 因此, 在带隙的短波长边缘处, 由于两种偏振的带隙随入射角增大的走向相反, 可用于实现宽角度的偏振选择. 图13(a)给出了实验测量的含双曲超构材料的一维光子晶体[(CD)2B]3的TM和TE偏振在带隙的短波长边缘$\lambda = 365$ nm处的反射率随入射角的变化[108]. 光子晶体的材料和几何参数同3.2节. 图 13 (a) 实验测量的含双曲超构材料的一维光子晶体[(CD)2B]3在波长365 nm处的TM和TE偏振的反射率随入射角的变化[108]; (b) 相应的偏振选择比随入射角的变化[108] Figure13. (a) Experimental reflectance of M[(CD)2B]3 as a function of incident angle for TM and TE polarizations at $\lambda = 365$ nm[108]; (b) corresponding polarization selection ratio as a function of incident angle[108].