Fund Project:Project supported by Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), the National Natural Science Foundation of China (Grant No. 11475171), and Science Challenge Project, China (Grant No. TZ2016005)
Received Date:15 April 2020
Accepted Date:18 June 2020
Available Online:16 October 2020
Published Online:05 October 2020
Abstract:Central outflow’s collimation by magnetic field is an important theoretical mechanism for explaining the astrophysical objects’ morphology formation, and its credibility has been tested in many laser plasma experiments in a dimensionless manner. This article introduces integrated simulation and experiment work based on the present laboratory magnetically collimated jet framework, to explore how non-ideal terms’ strength including radiative cooling and magnetic diffusion from different targets can affect the outflow shape. The interaction between outflow from a target with low atomic number and external field satisfies the ideal magneto-hydrodynamic conditions, and the outflow shape results in diamagnetic cavity and jet; on the other hand, a heavy element target brings strong magnetic diffusion that destroys the collimation structure, together with the stagnation of outflow introduced by radiative cooling, and outflow shape results in weakly collimated hemisphere near the target and a detached magnetized density clump. The detailed dimensionless analysis shows that the large-scale dissipation of jets in young stellar objects can possibly be an analog of the laboratory jet’s magnetic diffusion breakup, also similar structures like the loosely collimated lobes and bright ansaes in planetary nebula can be observed in highly diffusive laboratory outflows. This article shows for the first time that a series of non-relativistic astronomical outflows’ dynamic behaviors can be explained by the non-ideal magneto-hydrodynamic evolution of laboratory plasmas. Keywords:astrophysical outflow/ collimated jet/ laboratory astrophysics/ magneto-hydrodynamics
表1实验室等离子体与相关天体外流动力学参数及无量纲参数对比 Table1.Dynamics and dimensionless parameters comparison between laboratory plasma and related astronomical outflows
实验室等离子体参数已经在上一节介绍了. 表1中原恒星数据来自对准直区及传播区的实际观测[24,25], 特征尺度取射流的横向宽度约10 au; 行星状星云数据[26-28]则在磁场强度上借鉴了理论模型(目前无场强的直接测量), 特征尺度取发光腔体的典型直径1000 au. 结果可见, 各系统离子回旋半径均远小于外流尺度, 电子特征碰撞时间均远小于外流动态时间, 流体描述成立. 原恒星外流磁雷诺数接近1, 磁扩散是主要的非理想项, 这主要是由于射流细长, 磁场只需要横向渗透很短的距离. 行星状星云外流由于时空尺度巨大, 辐射冷却是主要的非理想项, 这里无量纲冷却强度是冷却时间与流体时间的比值, 数值小于1即标志着观察时间内冷却能起显著作用. 需要强调, 天体外流常常处于不完全电离甚至是带电分子基团的形式, 使用电离物质的定标率估计辐射冷却不一定准确, 实际冷却时间可能偏大, 因此表1中直接列出冷却强度的定性结论. 表1使用Shakura-Sunyaev模型[29]计算湍流可能导致的反常磁扩散, 并假设了湍流特征尺度约1 au, 最终得到天体磁雷诺数数值. 对大量原恒星的统计显示, 射流的传播距离总是远远小于周围的大角度风, 原因可能是射流准直结构被磁扩散[30]破坏. 如图6(a)中展示的HH34, 论长度属于超级射流, 可以看到随传播距离增加, 射流准直度降低直至瓦解. 需要强调的是, 在表1中估计磁扩散强度时, 选取射流横向宽度作为空间特征尺度(1.5 × 1014 cm对应约10 au), 再利用特征尺度除以流速得到流体特征时间, 作为计算磁雷诺数的分母(扩散时间/流体时间). 在空间尺度已趋保守的估计下, 得到的磁雷诺数为2.2, 磁扩散已经不可忽略. 实际上10 au仅相当于原恒星准直区长度, 像HH34这样的天体纵向延伸远超10 au, 其射流稳定传输的流体时间将是表1中估计的百倍以上. 在这种情况下, 即使对磁扩散速率的估计有一定偏差, 磁雷诺数远小于1的结论不变. 因此本文中碳氢靶、硅靶结果可能对应着天体准直区, 较小尺度(距离核心10 au以下)内外流仍满足理想磁流体近似; 而钽靶可能对应天体射流的长距离传播(100 au以上), 磁扩散将会破坏磁约束结构. 钽靶结果支持了相关天文理论, 磁扩散可能作为原恒星射流消散的原因之一. 图 6 (a)典型原恒星系统HH34的射电观测图像, 大角度外流包裹着准直射流, 射流从核心星近区发出, 延伸至2.0 × 104 au距离消散(原图版权归属于ESO, 本文作者添加注释); (b)拥有点对称双极化腔体的行星状星云M2-9, 内侧椭球腔顶部有增强的发光结构“ansaes”(原图版权归属于ESA/Hubble & NASA, Judy Schmidt, 本文作者添加注释); (c)实验室等离子体从抗磁射流到磁化密度堆积的转变, 部分结构与天体形态有相似性 Figure6. (a) Radio observation of a classical young stellar object HH34, the collimated jet is embedded inside a wide-angle outflow component, the jet originated from the inner region near the central star and extend 2.0 × 104 au of distance before termination (original image by ESO, annotated by author of this article); (b) planetary nebula M2-9 possesses a pair of point-symmetry bi-polar lobe cavities, with bright “ansaes” at the inside tips of the elliptical cavity shells (original image by ESA/Hubble & NASA, Acknowledgement: Judy Schmidt, annotated by author of this article); (c) laboratory plasma transformation from diamagnetic jet to magnetized density clump, structures show similarity with astrophysical objects.