1.i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China 2.College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Fund Project:Project supported by the the National Natural Science Foundation of China (Grant Nos. 61922082, 61875223, 61801472) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3610)
Received Date:06 March 2020
Accepted Date:29 March 2020
Available Online:09 May 2020
Published Online:20 September 2020
Abstract:As a member of the metal phosphorus trichalcogenide family, MPS3 is widely used in nonlinear optics and devices, which can be regarded as a significant benefit for the excellent photonic and optoelectronic properties. In this work, the MnPS3 nanosheet is prepared by the chemical vapor transport method and the MnPS3 saturable absorber is demonstrated by modifying mechanical exfoliation. To the best of our knowledge, the dual-wavelength self-starting mode-locking erbium-doped fiber laser with MnPS3 saturable absorber is demonstrated for the first time. The dual wavelength mode-locked laser with a pulse repetition rate of 5.102 MHz at 1565.19 nm and 1565.63 nm is proposed. Its maximum output power at the dual-wavelength is 27.2 MW. The mode-locked laser can self-start and stably run for more than 280 h. Keywords:MnPS3 nanosheets/ saturable absorber/ mode-locking
可饱和吸收体的制备方法目前主要有三明治型、倏逝波型、可饱和吸收镜型等[30-32]. 使用优化的胶带法机械剥离MnPS3单晶, 而后转移到光纤跳线端帽上, 制备光纤脉冲激光所需的类三明治式结构MnPS3-SA调制器件. 采用同样的机械剥离方法, 将MnPS3-SA转移到特制Si衬底上(表面有285 nm SiO2)表征. 图1(c)给出了使用共聚焦激光拉曼光谱仪(Raman, LabRAM HR Evolution)测得的MnPS3-SA拉曼光谱, 155, 225, 274和568 cm–1处的拉曼峰对应Eg振动模式, 在246, 384和582 cm–1处观察到$ {\mathrm{A}}_{\mathrm{g}}^{1} $振动模式, 与之前报道MnPS3典型特征峰相符[33,18]. 图2为使用Quanta 400 FEG场发射扫描电子显微镜(scanning electron microscope, SEM)测得的MnPS3-SA微观结构. 图2(a)为MnPS3-SA的场发射电子显微镜形貌图像, 图像显示样品表面没有杂质、光滑平整, 样品具有MnPS3低维材料特有的六边形和层状形貌. 利用SEM配套的能量散射X射线(energy dispersive X-ray spectroscopy, EDX)表征MnPS3选定区域的元素成分和原子含量, 并做元素面扫描, EDX能谱分析得到Mn原子、P原子和S原子在均匀分布且原子比为19.97%, 20.89%和59.13% (约1∶1∶3), 满足化学式比例(如图2所示). 图 2 MnPS3-SA的SEM表征 (a)随机选取的样品SEM图像和元素分析表; (b)?(d) Mn, P和S的EDX元素面扫描 Figure2. SEM characteristics of MnPS3 -SA: (a) SEM image of a randomly selected MnPS3 flake, and elemental analysis of this sample; (b)?(d) EDX element mappings for Mn, P, and S.
采用透射电子显微镜(transmission electron microscope, TEM)表征MnPS3样品的晶体结构, 结果如图3所示. MnPS3透射样品如图3(a)所示. 图3(b)和图3(c)分别展示了高分辨率透射电子显微镜(high-resolution transmission electron microscope, HRTEM)图像和区域电子衍射(selected area electron diffraction, SAED)图, 图示平面距离为0.29 nm的清晰晶格条纹对应于($13\stackrel{-}{1}$)晶面. 这些表征, 证明了本方法制备MnPS3样品结构均一、组分准确. 图 3 MnPS3纳米片的TEM表征 (a) MnPS3纳米片形貌; (b) MnPS3纳米片的HRTEM像; (c) SAED图 Figure3. TEM characterization of MnPS3 nanosheets: (a) TEM image of a MnPS3 nanosheet on a copper grid; (b) the HRTEM image of the MnPS3 nanosheet; (c) the corresponding SAED showing its single crystal nature.
基于光纤环形腔实验装置, 随着抽运光功率增加, 当输入抽运功率增加到70 mW时, 在示波器上观测到激光输出的脉冲时域型号信号, 并在70—270 mW的抽运范围内连续变化时可以观测到被动锁模激光输出. 输出激光功率和抽运功率的关系如图5(a)所示, 输出功率随抽运光功率的增加而线性增加, 最大输出功率为27.2 mW. 图 5 基于MnPS3-SA的脉冲光纤激光器的性能 (a)输出功率与抽运功率的关系; (b)输出光谱; (c)脉冲序列; (d)脉冲脉宽; (e) 0?10 MHz射频信号; (f)射频基频信号 Figure5. Performances of the pulse fiber laser based on MnPS3-SA: (a) The output power versus the pump power; (b) output optical spectrum; (c) the pulse trace; (d) the duration of single pulse; (e) the radio frequency spectrum from 0?10 MHz; (f) the radio frequency spectrum with ~64 dB (inset).