1.School of Electronic and Information Engineering, Beihang University, Beijing 100191, China 2.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grants Nos. 61905007, 11827807), the Natural Science Foundation of Beijing, China (Grant No. 4194083), and the National Key Research and Development Program of China (Grant No. 2019YFB2203102)
Received Date:24 July 2020
Accepted Date:08 September 2020
Available Online:15 October 2020
Published Online:20 October 2020
Abstract:As a typical phase transition material, vanadium dioxide has attracted much attention in the study of metal-insulator transition behavior since its phase transition temperature is close to room temperature. The experimental results of various modulation provide important clues to studying the vanadium dioxide phase transition mechanism. These experiments not only deepen the understanding of the strong correlation between electrons with different spins in various transition metal oxides, but also make an opportunity for exploring their potential practical applications. Although the phase transition mechanism of vanadium dioxide is still controversial, one has already made tremendous efforts to understand the mechanism of metal-insulation phase transition in the past few decades, which is stimulated from various experiments on vanadium dioxide modulation. Here in this work, the single crystal and polycrystalline vanadium dioxide are investigated. Their modulation mechanisms are studied by using the continuous laser pumping-terahertz probe technique, and it is found that the absorption behaviors of terahertz pulses at the same pump fluence are obviously different. After systematically discussing the representative phase transition mechanism, it is found that the phase transition of single crystal vanadium dioxide is attributed to the Mott-type phase transition dominated by the electronic structure, and that the polycrystalline vanadium dioxide originates from the Peierls-type phase transition occurring during the lattice distortion. In the past, most of the optical modulation was implemented under the condition of femtosecond laser pumping. The new optical modulation method given in this work, is a supplement to previous all-optical modulation experiment and more likely to be conducive to a more in-depth understanding of the modulation mechanism of vanadium dioxides. Keywords:terahertz wave/ optical modulation/ vanadium dioxide/ phase transition
全文HTML
--> --> --> -->
3.1.单晶二氧化钒透射和反射调制
首先, 本文将连续激光照射到单晶二氧化钒样品上, 为了避免样品架对太赫兹信号的影响, 太赫兹波的入射角选为30°, 调制光垂直照射到样品表面. 当调制光功率从0 W增大到5.4 W, 间隔约0.5 W的过程中, 图2(a)给出了不同抽运通量下的太赫兹时域透射信号, 为了更明显地显示信号的变化趋势, 图2(b)展示了时域波形峰值的局部放大图. 可以清晰地看到随着调制激光功率的增大, 太赫兹透射信号单调减小. 当调制通量为0 W/cm2时, 太赫兹透射信号峰值为1.53 nA. 当调制光通量增加到7 W/cm2时, 太赫兹透射信号减小到1.19 nA. 本文定义一个调制深度的参数来表征对太赫兹波的调制能力, 调制深度定义为 图 2 太赫兹波入射角为30° (a)透射时域波形信号; (b)局部放大的透射峰值时域信号; (c)不同调制激光通量下的调制深度; (d)—(f)与透射光谱相对应的反射光谱信号 Figure2. When the incidence angle of the terahertz pulses was fixed at 30°, the variations for (a) the transmitted terahertz temporal waveforms; (b) the zoomed in temporal transmission waveforms; (c) modulation depth under different optical modulation fluences; (d)—(f) the corresponding reflection spectra.
综合图2(a)—(f)的实验现象可以发现, 在外加调制光作用的情况下, 太赫兹波透过单晶二氧化钒样品的透射信号随着调制光功率的增大单调递减, 而反射信号则随调制光功率的增大单调递增. 将透射和反射的两组实验数据进行综合分析, 发现随着调制光功率的逐渐增大, 反射信号和透射信号的总和基本不变. 在忽略散射的情况下, 被单晶二氧化钒样品吸收的太赫兹信号(即入射信号减去反射信号和透射信号的总和)也基本保持不变, 如图3(b)所示. 随后根据垂直入射的太赫兹透射谱提取了在不同抽运通量下的折射率和消光系数(图3(d),(e)), 并基于它们计算了单晶二氧化钒在太赫兹频段电导率的虚部(图3(f)). 沿着图3(f)两条虚线截取两个频率点(0.79和1.09 THz), 观测其电导率随抽运功率的变化, 发现了其线性增长的趋势, 如图3(c)所示. 根据金属型光激发电导率的计算公式${\sigma _i} = {\sigma _0}\omega \tau \big/\big[ {1 + {{(\omega \tau )}^2}} \big]$, ${\sigma _0} \propto N$, 其中ω是圆频率, τ是光生载流子的弛豫时间, N是光生载流子的浓度[29]. 可看出, 抽运通量的增大只是单纯地改变了单晶二氧化钒中光生载流子的浓度, 并且直到击穿为止, 在所加抽运功率的范围内, 并没有出现电导率和材料介电性质的突变. 因为晶格的畸变对于材料的介电性质会有非常大的影响, 所以这对于排除晶体畸变的Peierls型相变是强有力的证据. 图 3 (a)旋转样品方位角对透射信号的影响; (b)随着调制通量的增大, 反射信号、透射信号和样品吸收的太赫兹信号的峰值变化; (c) 0.79和1.09 THz频率时, 随抽运通量线性增长的材料电导率; 不同调制通量作用下, 单晶二氧化钒在太赫兹频段的(d)消光系数; (e)折射率; 以及(f)电导率 Figure3. (a) The effect of the rotating sample azimuth on the transmission signal; (b) with the increase of the fluence, the variation of peak value of the reflected signal, the transmitted signal, and the terahertz absorbed by the sample; (c) the linear increasing conductivity with respect to the pump fluence under two exemplified frequencies 0.79 and 1.09 THz; (d) the wide-spectrum extinction coefficient, (e) refractive index, (f) conductivity of single crystal vanadium dioxide in terahertz region under the different pump fluences.
以往的超快光致相变均是在多晶二氧化钒样品中观察到. 本文在相同实验条件下, 也测量得到了多晶二氧化钒的实验结果, 如图4所示. 当逐渐增大调制激光的功率到4.6 W/cm2的时候, 观察到了多晶二氧化钒对透射太赫兹波的调制现象. 在将连续抽运激光通量从0 W/cm2逐渐增大到4.0 W/cm2时, 没有明显的单调变化规律, 说明还未达到调制阈值. 图 4 连续激光照射多晶二氧化钒对太赫兹波的调制实验结果 (a)不同调制光通量下, 太赫兹透射信号峰值随外加调制激光照射时间和撤去激光的变化过程; (b)透射调制深度随着调制光通量的变化关系 Figure4. Experimental results for terahertz modulation in polycrystalline vanadium dioxide illuminated by various modulation fluences: (a) The transmitted THz signal peak values as a function of the illumination time and crystal cooling time under various modulation fluences, respectively; (b) modulation fluence dependent on THz modulation depth.
综上讨论, 单晶二氧化钒在上述所做的降温和升温实验时间精度内没有发生明显的相变潜热过程, 所以不能简单归属为热致相变. 到目前为止, 二氧化钒的相变类型可分为Mott型、Peierls型和Mott-Peierls混合型. 其不同相的晶体结构如图5所示[6], 首先就二氧化钒本身而言, 在晶体场中3d轨道会形成3d||和3dπ两条子带(如图5中R相的能带图所示), 元胞中钒离子的3 d轨道形成能带时只有3d1一个电子填充, 属于未填满的状态. 由于过度金属氧化物中的d, f轨道填充时自旋向上和自旋向下的电子需要考虑Hubbard关联作用[30]和泡利原理, 新填充的电子自旋必须和原本填充的电子自旋相反并且呈现出排斥作用, 最终呈现出单个能带的自旋极化, 所以3 d||又进一步劈裂成上下两条子带, 在3d||和3d*||之间打开约0.7 eV的带隙, 如图5中M相能带所示. 本身依靠无相互作用的能带理论应该在低温条件下判定它为金属态. 但是有了电子关联作用, 在低温情况下仍然为绝缘体. 图 5 二氧化钒不同相的晶体结构和其对应的能带结构 Figure5. The crystal structures of different phases of vanadium dioxide and the corresponding band structures.
热诱导的相变过程中只涉及电子的热激发(25 meV), 主要是由热激发的声学支声子超过其相变的临界密度所致. 当声子在晶体局部超过其临界密度时, 会出现成核现象, 即局域的声子会形成“转变声子触发机制”[32]. 由于二氧化钒的结构相变属于一级相变, 只要外界一直提供相变潜热, 该触发机制就能一直以成核点为中心, 向四周扩散声子, 从而完成从绝缘的单斜晶系到金属的金红石晶系的结构相变, 如图6(b)所示. 图中已成核的金红石R相继续向四周扩散声子破坏原有的M相结构. 将该类相变称之为Peierls型, 见图6所示. 图 6 Peierls型相变原理示意图 (a)热激发直接导致声子的激发或800 nm (1.55 eV)抽运脉冲的光激发导致自由电子的激发, 并间接导致声子的激发, 这都将导致绝缘晶格到金属晶格的转变; (b)如果外界一直提供相变潜热, 则激发的声子从成核中心向四周扩散, 直到周围超过临界密度破坏单斜结构完成绝缘金属转变, 实现金属区域的扩大 Figure6. Schematic diagram of Peierls-type phase transition. (a) Thermal excitation directly leads to the excitation of phonons or photoexcitation with 800 nm (1.55 eV) pump pulse results in the excitation of free electrons and indirectly results in excitation of phonons, which map the insulating lattice onto the metallic lattice. (b) If the external environment always provided the latent heat, the phonons would diffuse from the nucleation center to the surroundings until the phonon density exceeded the critical density and destroyed the monoclinic structure to complete the insulating metal transition and realized the expansion of the metal domain.