Generation and control of photo-excited thermal currents in triple degenerate topological semimetal MoP with circularly polarized ultrafast light pulses
1.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2.School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3.Songshan Lake Materials Laboratory, Dongguan 523808, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303603, 2016YFA0300303, 2017YFA0302901), the National Natural Science Foundation of China (Grant Nos. 11574383, 11774408, 11774399), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB30000000), the International Partnership Program of CAS (Grant No. GJHZ1826), the Beijing Natural Science Foundation, China (Grant No. 4191003), and the CAS Interdisciplinary Innovation Team.
Received Date:06 January 2020
Accepted Date:06 April 2020
Available Online:09 May 2020
Published Online:20 October 2020
Abstract:Ultrafast spectroscopy is a powerful method to generate and control topological phase transitions and spin-polarized electrical currents in topological quantum materials. These light-induced novel physical properties originate from the topologically nontrivial states of Dirac and Weyl fermions. The topological semimetal molybdenum phosphide (MoP) exhibits double and triple degenerate points in the momentum space. We present the preliminary results of spin-polarized electrical currents and optical response investigations of MoP. We design and construct an experimental setup to perform the photocurrent generation and control by circularly polarized light in topological insulator Bi2Se3. The results compare well with those reported, which confirms the validity and reliability of our experimental setup. Further, we conduct the photocurrent experiment on MoP by using 400 nm laser pulses for excitation and successfully detect the current signals at different sample positions. We attribute the observed currents to photo-induced thermal currents (not the photo current associated with the triple degenerate topological properties), which facilitates generating and controlling photocurrents in MoP in the future investigation. Our thermal current investigations are of essence for further exploring the photocurrents in various types of topological quantum materials. Keywords:photocurrent/ triple degenerate topological material/ ultrafast spectroscopy/ spin polarization
全文HTML
--> --> --> -->
2.1.光电流的实验测量
采用中心波长为800 nm, 重复频率为250 kHz, 脉宽为70 fs的掺Ti-蓝宝石飞秒激光光源以及倍频后的400 nm光源进行光电流实验. 实验装置如图1(a)所示, 800 nm (或经过BBO晶体倍频后的400 nm)超快激光脉冲经过偏振片后, 再通过旋转后面的λ/4波片的角度周期性地改变出射光的偏振类型(左旋光-线偏振光-右旋光). 最后入射光经过采样频率为1 kHz的斩波器调制后由焦距为10 cm的凸透镜聚焦到样品表面, 光斑直径大小为60 μm. 由于光激发的电流信号非常小, 通常在pA至nA量级[32-34], 需要在样品上制备两个电极接至前置放大器上将电流放大, 最终再通过锁相放大器按照斩波器的采样频率进行采集记录, 获得光电流的信号. 采用电动旋转装置精确调节λ/4波片旋转的角度θ, 由自行编制的LabVIEW软件对其进行控制. 图1(b)为引文[35]报道的MoP的能带结构, 用粉红色和蓝紫色箭头分别表示800 nm (1.55 eV)和400 nm (3.1 eV)激光脉冲激发电子可能产生光电流的区域. 图1(c)为引文[35]报道的三重简并点, 是图1(b)的局域放大图. 红色圆圈为4个三重简并点. 图 1 (a) 光电流产生和探测实验装置, f1和f2为透镜, BBO为倍频非线性晶体; (b) 800 nm (1.55 eV, 粉红色箭头) 和 400 nm (3.1 eV, 蓝紫色箭头) 脉冲激光可能激发的动量区域, 其中能带结构引自文献[35]计算结果; (c) MoP中的4个三重简并点局域放大(红色圆圈)[35] Figure1. (a) Schematic photocurrent experimental setup. f1 and f2 are focusing lenses. BBO is the doubling frequency nonlinear crystal; (b) the allowed excitation areas by 800 nm (1.55 eV, pink arrows) and 400 nm (3.1 eV, purple arrows) pulsed lasers, respectively. The band structure is adapted from Ref. [35]; (c) the four triple points are highlighted by the red circles[35].
22.2.样品的表征 -->
2.2.样品的表征
MoP的单晶通过固相反应合成, 样品制备详情见文献[5]. 用扫描电子显微镜(scanning electron microscopy, SEM)观察样品表面, 图2(a)展示了样品整体的SEM扫描图像, 图2(e), (f)分别展示了样品在5和20 μm分辨率下的SEM扫描图像, 大小约为1 mm × 1 mm, 样品厚度为162 μm, 其表面非常平整, 适合用于光电流实验及其他表征. 图2(a)右图展示了样品加上两个电极后底部通过低温胶粘在铜托上的实物图, 两根直径为20 μm的Pt丝的一端通过银胶粘在样品两侧的表面上, 另一端连接到外电路上. 图 2 MoP样品的表征 (a) 光电流实验所使用的MoP样品, 左图为SEM图像, 右图为加电极后粘到铜托上的样品实物图; (b) 常温下的Raman光谱, 红色箭头标出两个拉曼峰; (c) 0和7 T下的电输运测量; (d) 2 K温度下的电阻随磁场的变化; (e) 5 μm分辨率样品局部放大SEM图; (f) 20 μm分辨率样品局部放大SEM图 Figure2. Characterizations of the MoP sample in the photocurrent experiment: (a) SEM image (left panel) and the sample after adding the electrodes (right panel); (b) Raman spectroscopy at room temperature, two red arrows mark the Raman peaks; (c) temperature dependence of the resistance at 0 and 7 T external magnetic field; (d) magnetic field dependence of resistance at 2 K; (e) SEM image with a resolution of 5 μm; (f) SEM image with a resolution of 20 μm.