Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2017YFB1102800) and the National Natural Science Foundation of China (Grant No. 11772258)
Received Date:14 May 2020
Accepted Date:05 June 2020
Available Online:28 October 2020
Published Online:05 November 2020
Abstract:Asymmetric transmission (AT) metamaterials are extensively studied and applied in the fields of polarization converters and photodiodes. In order to further improve the properties of polarization conversion and unidirectional conduction in the high frequency band and to implement their tunability, the novel chiral electromagnetic metamaterials are studied. By the topology optimization technique, a new type of double-layer L-shaped variant metamaterial structure with excellent asymmetric transmission characteristics is designed. The objective function is to maximize the asymmetric transmission coefficient for the linear polarization wave. The rotationally symmetrical design domain is determined by considering polarization conversion and computation efficiency simultaneously. The design domain of upper layer is divided into two parts which are both the 180° rotationally symmetrical. The design domain of the upper layer and lower layer are the 90° rotationally symmetrical around the x and z axis respectively. Therefore, the number of design variables is only 18. Asymmetric transmission of linear polarization wave in the K band and Ka band are implemented. Numerical simulation results and experimental results show that the optimized chiral metamaterial has excellent asymmetric transmission characteristics, and its asymmetric transmission coefficient reaches 0.8562 at a frequency of 21.65 GHz and 0.8175 at a frequency of 28.575 GHz. Its asymmetric transmission mechanism is expounded by analyzing the electric field and surface current distribution at the resonance frequency. Based on the optimized chiral metamatertials, the reasonable geometric parameters are selected and the rotation angle of the metal layer is changed in order to further achieve the tunable AT characteristics. First, the influences of the dielectric substrate layer, the thickness of the metal layer and the side length of the grid on resonance frequency and asymmetric transmission coefficient are analyzed respectively, which provides the basis for the reasonable adjustment of the structural parameters to obtain better asymmetric transmission characteristics. After the reasonable geometric parameters are determined, the rotational angle of the upper metal layer and lower metal layer are changed. The linearly and circularly polarized wave are simultaneously achieved in the K band. In this article, the topology optimization technique is used to design the asymmetric transmission chiral metamaterial structure. The design process has a clear direction. The optimized asymmetric transmission chiral metamaterial has the simple structure type and the easy tunability of its asymmetric transmission characteristics. It can be used widely and easily in the fields of polarization converters and photodiodes. This design method has a broad application prospect in the chiral metamaterial field. Keywords:asymmetric transmission/ tunablity/ chiral metamaterials/ topology optimization
为了进一步探究优化结构实现AT现象的物理机理, 选取20.075, 21.65, 28.575 GHz这3个谐振频点观察结构表层及底层金属的表面电流分布, 如图10—12所示, 图中箭头方向代表电流流动的方向. 在谐振频点20.075 GHz处, 表层及底层金属结构产生的表面电流反向平行, 形成感应磁场, 方向用彩色箭头标记为H1, H2, H3, H4; H2和H3与入射波电场方向垂直, 无法产生交叉耦合, 则不能产生极化转换的效果, 而H1和H4与入射波电场方向平行, 导致极化转换的产生. 类似的现象在谐振频点21.65 GHz及28.575 GHz处可以观察到, 感应磁场H1和H4与入射波电场方向平行, 同样可以形成极化转换. 图 10f = 20.075 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流 Figure10. Surface current at f = 20.075 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.
图 11f = 21.65 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流 Figure11. Surface current at f = 21.65 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.
图 12f = 28.575 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流 Figure12. Surface current at f = 28.575 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.
另一方面, 当x极化波分别沿–z方向和+z方向入射时, 优化结构两侧的电场分布如图13所示, 其中黑色箭头方向代表电磁波传播方向. 在谐振频点20.075 GHz处, x极化波沿–z方向入射时, 如图13(a)所示, 传输波的电场极化方向沿y方向, 说明了该结构具备极化转换能力; x极化波沿+z方向入射时, 如图13(b)所示, 传输y极化波的电场极化强度很低, 说明x极化波难以转换为y极化波. 图13(c)、图13(d)及图13(e)、图13(f)也分别在谐振频点21.65 GHz及28.575 GHz处显示出了同样的现象, 这证明该结构具有AT效应. 图 13 线性x极化波沿–z及+z方向入射时优化结构两侧电场分布 (a), (b) f = 20.075 GHz; (c), (d) f = 21.65 GHz; (e), (f) f = 28.575 GHz Figure13. Electrical field distributions on both sides of the optimized structure when the linear x-polarized wave is incident along the –z and +z directions: (a), (b) f = 20.075 GHz; (c), (d) f = 21.65 GHz; (e), (f) f = 28.575 GHz
-->
3.1.几何参数对AT特性的影响
首先分析介质层厚度d改变所带来的影响. 令d分别取0.6, 0.7, 0.8, 0.9, 1.0 mm, 表层及底层金属结构厚度t = 0.036 mm, 优化过程网格边长b =1 mm, 中间介质层宽度a = 8 mm, 此时该结构的非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $见图14, 随着介质层厚度d的增加, 谐振频率红移. 同时, 谐振频率处$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $的峰值随介质层厚度的增加变化不一致, 而是先增大后减小, 当d = 0.9 mm时, 非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $取得最大值0.91, 此时该结构的AT效果最佳. 图 14 线性x极化波沿–z方向入射时优化结构介质层厚度d对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $的影响 Figure14. Effect of the thickness d of dielectric layer on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $when linear x-polarized wave is incident in the –z direction.
其次分析金属层厚度t改变所带来的影响. 令t分别取0.036, 0.108, 0.18, 0.252, 0.324 mm, 优化过程网格边长b = 1 mm, 中间介质层厚度d = 0.8 mm, 宽度a = 8 mm, 此时该结构的非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $如图15所示, 随着金属层厚度t的增加, 谐振频率蓝移. 同时, 谐振频率处$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $的峰值随金属层厚度的增加变化不一致, 而是先增大后减小, 当t = 0.252 mm时, 非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $取得最大值0.92, 此时该结构的AT效果最佳. 图 15 线性x极化波沿–z方向入射时优化结构金属层厚度t对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $影响 Figure15. Effect of the thickness t of the optimized structural metal layer on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $ when the linear x-polarized wave is incident in the–z direction.
最后分析优化过程网格边长b改变所带来的影响. 令b分别取0.9, 0.95, 1.0, 1.05, 1.1 mm, 表层及底层金属结构厚度t = 0.036 mm, 中间介质层厚度d = 0.8 mm, 宽度a = 8 mm, 此时该结构的非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $如图16所示, 随着网格边长b的增加, 谐振频率红移. 同时, 谐振频率处$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $的峰值随网格边长的增加而增加, 当b = 1.1 mm时, 非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $取得最大值0.89, 此时该结构的AT效果最佳. 图 16 线性x极化波沿–z方向入射时优化结构网格边长b对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $影响 Figure16. Effect of the small square side length b on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $ when the linear x-polarized wave is incident in the –z direction.