1.College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China 2.Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China 3.Tianjin Institute of Modern Laser & Optics Technology, Tianjin 300384, China
Abstract:The THz wave has good photonic and electronic properties, and has high penetration for non-polar materials, but its own photon energy is low. In addition, the THz wave also has characteristics such as wide bandwidth and large communication capacity, thereby making the THz wave possess important academic value and wide application prospects in the fields of non-destructive testing, biomedical imaging and communication. The development of THz technology requires not only high-performance THz waveguide technology for efficient transmission of THz waves, but also important optical devices such as optical switches, modulators, and couplers that are suitable for THz bands. With the in-depth study of THz waveguide technology, researchers have proposed many high-performance THz waveguide structures, such as metal hollow core tube waveguide, parallel metal plate waveguide, photonic crystal fiber and microstructure hollow core fibers, among which hollow-core photonic crystal fibers and hollow-core anti-resonant fibers (HC-ARF) have developed rapidly in recent years. So far, THz single-mode single-polarization fiber and high-birefringence fiber have been widely studied, but the researches on the fiber structure and devices that realize THz wave directional coupling are relatively rare. In this paper, we study the influences of the arrangement and distribution of the inner and outer claddings of HC-ARF on transmission characteristics, and thus design a new type of THz dual-core anti-resonant fiber. Compared with ordinary quartz fiber couplers and dual-core photonic crystal fibers, it can utilize a relatively simple structure and achieve directional coupling above 2 THz. Using the finite element analysis method to theoretically analyze the loss characteristics and coupling characteristics of the fiber, it is found that HC-ARF changes the periodic arrangement and distribution of the inner cladding tube within a certain range, which can achieve mode leakage without affecting the fiber transmission characteristics. So the THz dual-core anti-resonant fiber can be designed by using the mode leakage coupling mechanism. By changing the core distance and core gap size, the directional coupling with a coupling length of 0.72 m is realized at a transmission frequency of 2.5 THz. This terahertz dual-core anti-resonance fiber will have an important application value in terahertz optical devices such as terahertz optical switches, modulators and couplers. Keywords:terahertz/ dual-core anti-resonant fiber/ directional coupling/ coupling length
全文HTML
--> --> --> -->
2.1.结构设计
本文采用的HC-ARF基础结构如图1(a)所示, 纤芯直径Dcore为2 mm, 6个内包层管的直径d为1 mm, 管壁厚t为0.13 mm, 满足反谐振周期条件$t = (N - 0.5)\lambda /[2{(n_1^2 - n_0^2)^{1/2}}]$, 其中λ为波长, $n_1^{}$为材料折射率, $n_{\rm{0}}^{}$为空气折射率, N为正整数, 本文取N = 2. 为了研究内、外包层对纤芯能量的限制作用, 先后剥离光纤的部分外包层以及扩大某一处内包层管的间隙, 形成了如图1(b)所示的外包层间隙结构(HC-ARF with outer-slit cladding, O-ARF)和如图1(c)所示的内包层间隙结构(HC-ARF with inner-slit cladding, I-ARF). 在O-ARF中, 内包层管位置不变, 增加外包层间隙大小, 为了保证光纤结构的完整性, 外包层间隙大小φ最大为50°; 在I-ARF中, 外包层结构不变, 只改变某一处内包层管的间隙大小, 为了保证光纤的完整性, 包层管间隙大小φ最大为60°. 图 1 端面示意图 (a) HC-ARF基础结构; (b) O-ARF; (c) I-ARF Figure1. The cross-section of (a) HC-ARF, (b) O-ARF, and (c) I-ARF.
为了在HC-ARF中实现定向耦合, 本文设计了一种较为直接的解决方案, 即将两根相同的HC-ARF剥离部分外包层、扩大并调整某一处内包层管间隙后进行镜像组合, 形成如图5(a)所示的双芯结构, 称为镜像双芯反谐振光纤. 图5(b), (c)分别为该光纤在x偏振方向上对称模s和反对称模a的模场图, 前者的两个纤芯模场都处于正强度峰中, 后者的一个纤芯模场处于正强度峰中, 而另一个处于负强度峰中. 图 5 (a) 镜像双芯反谐振光纤端面示意图; x偏振方向上的对称模s (b)和反对称模a (c)的模场图 Figure5. (a) The cross-section of dual-core HC-ARF with mirror composition; the fundamental mode distribution of even-mode s (b) and odd-mode a (c) at x-polarization.
在镜像双芯反谐振光纤中, 影响耦合长度的主要因素是间隙大小φ. 镜像双芯反谐振光纤在x偏振方向上的耦合长度随φ的变化如图6(a)所示, 图6(b), (c), (d)分别表示φ为30°, 42°和60°时光纤对称模s的模场图. 可以发现, 随着间隙φ的增大, 耦合长度呈指数下降, 并在φ为42°时实现耦合长度为7.2 m的定向耦合. 由图6(b), (c), (d)所示的场强分布的变化表明, 当φ ≤ 42°时对称模s在两个纤芯中保持独立; 但当φ > 42°时, 对称模s的本征模式在结构中心出现了明显的独立模式, 两个纤芯的模式向结构中心偏移而发生重叠. 图 6 (a) 镜像双芯反谐振光纤的耦合长度随φ的变化曲线; 光纤在x偏振方向上的对称模s的模场图 (b) φ = 30°; (c) φ = 42°; (d) φ = 60° Figure6. (a) Coupling length as a function of φ for dual-core HC-ARF with mirror composition and the fundamental mode distribution of even-mode at x-polarization when (b) φ = 40°, (c) φ = 42° and (d) φ = 60°.
图6说明间隙过大会破坏了两侧HC-ARF的波导作用, 使得双芯结构中心区域出现了类HC-ARF结构, 不再符合耦合模理论, 再扩大间隙大小也无法实现定向耦合, 这与第2节中HC-ARF关于间隙大小φ的分析一致. 因此这种光纤受间隙大小的限制无法得到理想的耦合长度. 为了解除镜像双芯反谐振光纤受间隙大小的限制并进一步缩短耦合长度, 在双芯结构镜像组合的基础上, 改变结构内部包层管排列分布, 调整纤芯距离形成如图7(a)所示的新型双芯结构, 称为包层重构型双芯反谐振光纤. 该结构将包层管1和2移动到双芯连接区域, 二者的距离为dr, 两个纤芯的距离为Dr, 每一侧的5个包层管在光纤内均匀分布. 在不改变整体结构内部包层管数量的情况下, 利用包层管1和2将两芯区域隔开, 这不仅确保了左右两部分符合HC-ARF结构, 而且能够利用包层管1和2之间的间隙进行模式泄漏以实现定向耦合. 图 7 (a) 包层重构型双芯反谐振光纤端面示意图; x偏振方向上的模场图 (b) 对称模s, (c) 反对称模a Figure7. (a) The cross-section of dual-core HC-ARF with cladding reconstruction; the fundamental mode distribution of (b) even-mode s and (c) odd-mode a at x-polarization.
在该光纤中, 影响耦合长度的主要因素不仅是间隙大小φ, 也包括包层管1和2之间的距离dr与两个纤芯的距离Dr. 不同Dr下的耦合长度随dr的变化曲线如图8(a)所示. 可以发现, 随着dr从0.9 mm增加到1.4 mm, 不同Dr下的耦合长度均呈指数下降, 由此可见dr可以显著影响耦合长度, 而在相同的dr下, Dr从2.6 mm到3.6 mm的变化则对耦合长度的影响很小. 不同Dr下的纤芯能量占比随dr的变化曲线如图8(b)所示, 可见两者呈反比, 且Dr越小, 纤芯能量占比随dr的变化程度越小. 根据第2节所得结论, 为保证I-ARF光纤功能的完整性, 需要使纤芯能量占比在83%以上, 此时光纤在Dr = 2.6 mm、dr = 1.2 mm时具有最佳定向耦合效果, 耦合长度为0.72 m, 纤芯能量占比为83%, 对应的在x偏振方向上的对称模s和反对称模a的模场图如图7(b), (c)所示. 由此可见, 包层重构型双芯反谐振光纤在镜像双芯反谐振光纤的结构基础上通过优化内包层管的排列分布, 保证了HC-ARF的光纤功能的完整性, 突破了间隙大小的限制, 并进一步缩短了耦合长度, 在结构简单的双芯光纤中实现了2.5 THz波的定向耦合. 图 8 (a) 包层重构型双芯反谐振光纤在不同Dr下的耦合长度随dr的变化曲线; (b) 包层重构型双芯反谐振光纤在不同Dr下的纤芯能量占比随dr的变化曲线 Figure8. (a) Coupling length (Lc) and (b) energy rate (R) as a function of dr under different Dr for dual-core HC-ARF with cladding reconstruction.