1.Engineering Research Center of Nuclear Technology Application, Ministry of Education, East China University of Technology, Nanchang 330013, China 2.School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
Fund Project:Scientific Research Staring Foundation for Doctors of East China University of Technology, China (Grant No. DHBK2019170).
Received Date:26 July 2020
Accepted Date:28 August 2020
Available Online:18 December 2020
Published Online:05 January 2021
Abstract:Ag2ZnSnSe4 is an n-type semiconductor with a suitable bandgap of 1.4 eV. In the present study, a graphene/Ag2ZnSnSe4 induced p-n junction thin film solar cell is proposed and the physical mechanism and performance influencing factors of the solar cell are simulated and analyzed by using the wxAMPS software. The simulation results show that when a high work function graphene contacts an n-type Ag2ZnSnSe4 semiconductor, the energy band of the Ag2ZnSnSe4 absorber layer bends upward, meanwhile a p-type Ag2ZnSnSe4 inversion layer is induced on the surface of n-type Ag2ZnSnSe4, therefore the p-type Ag2ZnSnSe4 and n-type Ag2ZnSnSe4 form an induced p-n homojunction. It is found that the work function of graphene and back contact significantly influence the photogenerated carrier separation, transportation and collection. The graphene work function should be 5.5 eV and the work function of back contact should not be greater than 4.4 eV, which is beneficial to the improving of the device performance. The doping concentration of Ag2ZnSnSe4 absorber mainly affects the short-circuit current of the device, however, the defect density of Ag2ZnSnSe4 absorber affects the whole device performance. When the work function of graphene and back contact are 5.5 eV and 3.8 eV, the doping concentration and defect density of Ag2ZnSnSe4 absorber are 1016 cm–3 and 1014 cm–33, respectively, the conversion efficiency of the graphene/Ag2ZnSnSe4 induced p-n junction thin film solar cell can reach 23.42%. These simulation results provide the idea and physical explanation for designing a novel type of solar cell with high efficiency and low cost. Keywords:graphene/ Ag2ZnSnSe4/ induced p-n junction/ thin film solar cell
2.器件结构与模拟参数利用一维微电子与光电子器件模拟软件wxAMPS对Graphene/AZTSe薄膜太阳电池进行模拟分析. 模拟采用的电池结构如图1所示, 其中AZTSe为吸收层. 表1为模拟使用的主要材料参数[11,16-19]. 模拟时电池的工作温度为300 K, 入射光是标准的AM 1.5G光谱. 模拟时如无特别说明AZTSe吸收层中的缺陷密度设定为1014 cm–3. 图 1 模拟器件结构 Figure1. Structure of the graphene/AZTSe induced p-n junction solar cell used in the numerical simulation.
参数
AZTSe
厚度/μm
2
相对介电常数 εr
12.6
电子亲和能 χe/eV
4.2
禁带宽度 Eg/eV
1.4
施主掺杂浓度 ND/cm–3
1011—1016
导带有效态密度 Nc /cm–3
2.2 × 1018
价带有效态密度Nv /cm–3
1.8 × 1019
电子迁移率 μn/cm2·V–1·s–1
100
空穴迁移率 μp/cm2·V-1·s–1
2
缺陷密度 Nt/cm–3
1013—1018
表1模拟使用的主要材料参数 Table1.Main material parameters used in the numerical simulation.
3.结果与讨论23.1.石墨烯功函数的影响 -->
3.1.石墨烯功函数的影响
在Graphene/AZTSe诱导p-n结薄膜太阳电池中, 石墨烯不仅充当透明导电电极和太阳光进入电池的窗口层, 发挥载流子收集功能, 更重要的是诱导半导体吸收层表面发生反型, 直接参与光生载流子的分离, 因此石墨烯对诱导p-n结薄膜太阳电池性能有很大的影响. 早期研究报道石墨烯的功函数在3.40—5.14 eV之间[20-22], 最近Seo等[23]利用化学气相沉积的方法制备了功函数高达5.5 eV的石墨烯. 我们首先保持电池背接触为平带结构, 通过调整石墨烯的功函数来研究Graphene/AZTSe太阳电池的光伏性能. 图2(a)给出的是电池的电流密度-电压特性曲线, 可以看出, 随着功函数的增加, 电池的开路电压、短路电流和填充因子都得到明显改善, 功函数为5.5 eV时, 电池的开路电压、短路电流、填充因子和转换效率分别为856.4 mV, 31.28 mA/cm2, 84.04%和22.51%. 图 2 不同石墨烯功函数情况下电池的 (a)电流密度-电压特性曲线, (b)能带结构, (c)电场分布, (d)载流子浓度, (e)载流子复合率分布, (f)量子效率 Figure2. Graphene/AZTSe induced p-n junction thin film solar cell with different values of graphene work function (a) current density-voltage curves, (b) energy band structure, (c) electric field, (d) carrier concentration, (e) carrier recombination rate profile, (f) quantum efficiency.