Fund Project:Project supported by the Natural Science Foundation of Hubei Province, China (Grant Nos. 2018CFB724, 2019CFB788), the Research Program of Education Bureau of HuBei Province, China (Grant No. D20171803), the Foundation of Discipline Innovation Team of HUAT, China, and the National Natural Science Foundation of China (Grant No. 11674113)
Received Date:22 June 2020
Accepted Date:27 July 2020
Available Online:30 November 2020
Published Online:20 December 2020
Abstract:According to the first-principles calculation within PBE+U method and tight-binding model, the magnetic properties and electronic structures of two-dimensional (2D) CrPSe3 monolayer were investigated. Constructed by a Cr-honeycomb hexagonal lattice, 2D CrPSe3 was predicted to be in a half-metallic ferromagnetic state with dynamic stability, confirmed by the phonon spectrum with no imaginary dispersion. The Curie temperature was estimated as 224 K by Monte Carlo simulation within the Metropolis algorithm under the periodic boundary condition. The thermal stability of CrPSe3 monolayer was estimated at 300 K by a first-principles molecular dynamics simulation. It is found that the magnetic ground state of CrPSe3 monolayer is determined by a competition between the antiferomagnetic d-d direct exchange interactions and the Se-p orbitals mediated ferromagnetic p-d superexchange interactions. Most interestingly, in the half-metallic state the band structure exhibits multiple Dirac cones in the first Brillouin zone: two cones at K point showing a very high Fermi velocity${v_{\rm F}{(K)}} = 15.8 \times 10^5 \;{\rm m \!\cdot\! s^{-1}}$ about twice larger than the $ v_{\rm F} $ of graphene in the vicinity of Fermi level, and six cones at $ K'/2 $ points with ${ v_{\rm F} {(K'/2)}} = 10.1 \times 10^5\;{\rm m \!\cdot\! s^{-1}}$ close to the graphene's value. These spin-polarized Dirac cones are mostly composed of Cr ${\rm d}_{xz}$ and ${\rm d}_{yz}$ orbitals. The novel electronic structure of CrPSe3 monolayer is also confirmed by the HSE06 functional. A tight-binding model was built based on the Cr-honeycomb structure with two Cr-d orbitals as the basic with the first, second and third nearest-neighboring interactions, further demonstrating that the multiple Dirac cones are protected by the Cr-honeycomb lattice symmetry. Our findings indicate that 2D CrPSe3 monolayer is a candidate with potential applications in the low-dimensional, high speed and temperature spintronics. Keywords:two-dimensional ferromagnetism/ Dirac cone/ first-principles calculation/ tight-binding method
全文HTML
--> --> --> -->
3.1.二维CrPSe3的磁性
二维CrPSe3具备一般TMPX3的典型$ D_{3 d} $点群对称性的三明治结构, 如图1(a)所示, 晶体中间层是一套由过渡金属Cr 原子构建的六角蜂窝状结构, 同时, 每个Cr 原子被6个Se 原子构成的八面体包围. 一副P-P 原子对垂直穿越六角Cr 蜂窝结构的中心, 上下两个P 原子各连接3个Se 原子并形成金字塔状结构, 相互平行的两套Se 原子层之间存在一$ 60^{\circ} $的扭角. 固定Cr 原子的坐标, 对P 和Se 原子的坐标以及晶格常数进行优化后的晶格常数为$ a = b = 6.364$ ?; Se 原子层的层间距, 即二维CrPSe3的层厚为$ h = 3.394 $ ?; 其他参数优化结果详见表1, 这些优化结果和先前理论结果接近[15]. 二维CrPSe3的声子谱在晶格优化基础上进行了 计算, 如图1(b)所示. 沿布里渊区的高对称路径$ \varGamma $-K-M-$ \varGamma $绘制的声子谱没有显示虚频, 表明二维CrPSe3具有动力学稳定性. 从声子谱态密度 (PDOS) 图(图1(b))可知, 5 THz 以下的声子激发主要源于Se 原子层的贡献, 高频区12 THz 以上则主要源于P-P 对的振动. 值得注意的是, Cr 原子的振动模式主要集中在6 THz 左右, 显示Cr 六角蜂窝结构具有良好的动力学稳定性. 图 1 二维CrPSe3的(a) 晶体结构俯视图和侧视图(灰色虚线表示晶体单胞), (b) 声子谱(插图为布里渊区及高对称点)和声子态密度 Figure1. (a) Top and side views of two-dimensional (2D) CrPSe3 monolayer with the hexagonal unit cell denoted by grey broken lines; (b) the phonon spectrum and the corresponding density of states (DOS) for Cr, P and Se atoms, respectively, the inset shows the Brillouin zone of 2D CrPSe3 monolayer
晶格常数/?
键长 d/?
原子夹角$\theta /(^\circ)$
a
6.364
Cr—Cr
3.674
Cr—Se—Cr
85.3
b
6.364
Cr—Se
2.711
Se—P—Se
113.5
h
3.394
P—Se
2.211
表1二维CrPSe3的优化结果(晶格常数$a$(?)、晶体厚度$h$(?)、部分键长$d$(?) 和原子间的夹角$\theta\;(^\circ)$) Table1.Optimized lattice constants $a$(?), monolayer thickness $h$(?), some bond legths $d$(?) and angle $\theta\;(^\circ)$ between some atoms of 2D CrPSe3 monolayer
考虑铁磁 (FM) 和反铁磁 (AFM) 两种不同的自旋排列结构, 如图2(a) 中插图所示, 计算了两种磁构型下二维CrPSe3的总能. 结果分别为$ E_{\rm{{FM}}} = –50.772\; {\rm{eV}}$和$ E_{\rm{{AFM}}} = –50.486 \;{\rm{eV}}$. 这里定义交换能为$ \Delta E = E_{\rm{{AFM}}}-E_{\rm{{FM}}} $, 可得$ \Delta E = 0.286 \;{\rm{eV}}$, 显然铁磁构型的体系能量要比反铁磁构型的低, 表明二维CrPSe3的基态具有铁磁特性. 二维体系的磁性状态会受到外界压力的影响, 这也是调控二维材料铁磁相变的一种重要手段[6]. 在此对晶格常数$ {a, b} $同时等比例缩放来模拟二维CrPSe3双轴均匀加压作用. 交换能随压强变化的结果如图2所示, 横坐标中负值表示压缩比例, 正值表示膨胀比例. 从交换能变化关系可见, 在压缩外力作用下, $ |\Delta E| $和晶格常数几乎呈线性关系, 而在膨胀状态下, $ \Delta E $变化幅度较小. 可以发现, 二维CrPSe3在大约 –10% 的外力压缩作用下存在铁磁到反铁磁的相变, 但在较小的压缩形变和膨胀形变中稳定为铁磁态. 为了进一步证明二维CrPSe3的铁磁相的稳定性, 我们考虑了不同U值时的交换能, 结果显示采用不同U值下$ \Delta E $一直保持正值状态; 而且$ \Delta E $对U值几乎呈线性关系, U值越大, $ \Delta E $越大. 根据以上的讨论, 可以认为二维CrPSe3具备较为稳定的铁磁相, 该结果和文献[15]中预测的情况一致. 在铁磁状态下, 二维CrPSe3的总磁矩为$ 8.00\;\mu _{\rm{B}}$, 对应于晶胞中两个磁矩为$ 3.98\;\mu _{\rm{B}}$的Cr2+离子, 其他离子的磁矩较小. 为了直观地观察二维CrPSe3自旋分布情况, 我们计算了自旋电荷密度$ \rho_{\rm{{spin}}} = \rho_{\uparrow}-\rho_{\downarrow} $分布, 如图2(a)内插图所示. 自旋电荷密度图清晰地展示了二维CrPSe3的磁矩主要局域在过渡金属元素Cr 原子周围; 值得注意的是, 与Cr 相连的Se 的磁矩表现为较小的负值. 反铁磁态的自旋电荷密度也在图2(a)中给出, 相应地, 自旋分布也集中在Cr 原子周围, 而P 和Se 原子的磁矩基本为零. 图 2 二维CrPSe3的交换作用能$\Delta E$ (meV) 随(a)面内双轴压力(负值表示压缩, 正值表示膨胀)和(b) $U$值的变化曲线, 图(a)内插图是铁磁态和反铁磁态的自旋电荷密度图, 等值面密度为 3 × 10–3${\rm{e}}$·?–3, 淡黄和浅蓝分别代表自旋向上和自旋向下的电荷密度分布 Figure2. Exchange parameters $\Delta E=E({\rm{AFM}})-E({\rm{FM}})$ (meV) with respect to (a) in-plane biaxial strain (negative value denotes compressive and postive means tensile) and (b) U value of 2D CrPSe3. The insects of panel (a) is the spin electron density of 2D CrPSe3 in FM and AFM states with isovalue of 3 × 10–3${\rm{e }}$·?–3. The yellow and cyan colors represent spin-up and down electrons, respectively
代入交换能$ \Delta E $可得到交换常数值J = 3.14 meV. 蒙特卡罗模拟在$ 32\times32 $二维自旋超晶格中进行, 温度每变化一次执行$ 10^9 $步的迭代, 每步迭代时, 超晶格中的磁构型由磁矩的随机翻转而改变. 图3 给出了随温度T变化的格点相对磁矩和比热容$C_v(T) = ( \left\langle E^2 \right\rangle - \left\langle E \right\rangle ^2)/(k_{\rm{B}}T^2)$变化曲线 ($ k_{\rm{B}} $为玻尔兹曼常数). 从比热容曲线的峰值位置可以得到二维CrPSe3的居里温度为$T_{\rm{C}} = 224\;{\rm{K}}$, 该值远高于液氮温度, 并接近于室温. 相对磁矩曲线表现出典型的铁磁性材料磁矩随温度变化特征, 在低于150 K 的温度以内, 格点磁矩保持在$ 1.00\;\mu _{\rm{B}}$的饱和值, 表明体系处于铁磁态. 温度高于150 K 时, 格点磁矩开始下降, 在220 K 附近磁矩下降到饱和值的一半, 约$ 0.50\;\mu_{\rm{B}} $; 随后在350 K 附近降至$ 0\;\mu _{\rm{B}}$, 二维CrPSe3转变为顺磁相. 图 3 二维CrPSe3 (a)相对磁矩和比热容相对于温度的蒙特卡罗模拟变化曲线, 以及(b) 300 K温度下$4\times4\times1$超胞总能随时间的变化, 插图是弛豫6 ps 后的晶体结构图 Figure3. (a) The Monte Carlo simulated magnetic moment and specific heat capacity as a function of temperature and (b) total energy fluctuations with respect to the simulation time at 300 K of CrPSe3 monolayer. The inset shows the corresponding structure at 300 K after the simulation for 6 ps