Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11847002, 11904008), the China Postdoctoral Science Foundation (Grant No. 2019M662132), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA21)
Received Date:08 April 2020
Accepted Date:18 July 2020
Available Online:26 November 2020
Published Online:05 December 2020
Abstract:Mirrors can be seen everywhere in daily life and play an important role in modern optical systems. A traditional mirror, which is made of noble metals, usually has a zero electric field strength and maximal magnetic field strength at its surface induced by the out-of-phase of electric field and in-of-phase of magnetic field between the reflected field and incident field due to the boundary condition of perfect electric conductor. As the magnitude of local electric field determines the strength of the light-matter interaction, it is clear that this interaction is suppressed near the mirror surface. Magnetic mirror, which can enhance electric field on the surface, has been widely applied to strong light-matter interaction for biological sensing, material analysis, and imaging. However, the conventional smooth magnetic mirror with a plane surface is difficult to induce sufficient light-matter interaction when the matter has a complex geometrical shape. Here in this work, we propose a concept of magnetic mirror with a rough interface designed by an array of artificial surface plasmonic structures. The artificial surface plasmonic structure on a subwavelength scale is designed by periodically inserting spiral metallic strips into a dielectric cylinder to support the strong magnetic dipolar resonant mode. The magnetic dipolar resonance of the excited structure is induced by the displacement current circle. Therefore, the resonant frequency is related to the geometrical parameters of the helical structure closely. When we reduce the outer radius of the structure, the magnitude of the displacement current circle will change, resulting in blue-shift of the resonant frequency. At the same time, we also find that increasing the spiral degree of the structure will cause the magnetic dipolar resonance frequency to become red-shifted. Particularly, the same magnetic dipolar mode can be supported in a spiral structure of different size by tuning the spiral degree accordingly. In this context, we design a rough magnetic mirror constructed by the artificial surface plasmonic structures with various sizes, and demonstrate that the efficiency of rough magnetic mirror is in agreement with that of smooth magnetic mirror. The proposed rough magnetic mirror can provide the unique ability to enhance the interaction between light and complicated matter for the application of biological sensing and imaging in microwave and terahertz band. Keywords:rough magnetic mirror/ spoof surface plasmonic structure/ light-matter interaction
全文HTML
--> --> -->
2.人工表面等离激元结构设计及其电磁响应图1(a)显示了二维的人工表面等离激元结构, 该螺旋结构可通过周期地将具有对数螺旋线的螺旋金属条插入到介电圆盘中来构造. 在该模型中, 空心螺旋结构的内半径和外半径分别用r和R表示. 此处, (ρ, θ)是极坐标, a和d = 2πR/N分别对应于金属条的宽度和周期, 其中N是金属条的数量. 结构中蓝色部分选择了一种折射率ng为3.4的材料(类似于硅), 黄色部分代表完美电导体, 整个结构被置于空气之中. 这种类似的螺旋结构已经被提出用来分析描述人工表面等离激元的电磁特性[28]. 在这里, 对数螺旋线的公式可以写成$\rho = r \exp \left[ {\left( {{\rm{lo}}{{\rm{g}}_{10}}\left( {R/r} \right)/{\theta _0}} \right)\theta } \right]$, 螺旋槽的长度写为 图 1 (a)人工表面等离激元结构示意图; (b)计算的由不同材料构成的人工表面等离激元结构的散射谱, 其中黑色曲线代表PEC, 蓝色曲线代表Ag, 红色曲线代表Cu; (c)图1(b)中的黑色实线对应的共振峰的近场模式Hz Figure1. (a) Schematic diagram of spoof surface plasmonic structure; (b)calculated scattering cross section spectrum of spoof surface plasmonic structure made of different materials, where the black curve represents PEC, the blue curve represents Ag and the red curve represents Cu; (c) near-field pattern ${H}_{ {z}}$ for the resonant peak in the black solid line of (b).
其中$ {\theta }_{0} $是对应于螺旋槽长度L的旋转角度, 在下文中$ {\theta }_{0} $表示结构的螺旋度. 这些结构参数在图1(a)中已经标示. 这里, 选取的结构参数为R = 45 μm, r = 5 μm, a = d/3, N = 4, ng = 3.4, $ {\theta }_{0} $=1.5π. 由于a <$d\ll{\lambda }_{0}$, 结构的大小可以被设计在深亚波长范围内, 其中λ0是入射波的波长. 为了研究这种螺旋结构中的光学响应特性, 使用一个沿y方向传播的横磁平面波入射该螺旋结构. 在图1(b)中, 使用商用软件COMSOL MULTIPHYSICS计算了半径为R的螺旋结构的归一化散射截面, 这里的归一化散射截面为计算的总散射截面除以直径2R. 由于金属在较低频率下的行为类似于完美电导体, 在这里首先将人工表面等离激元结构的材料假定为完美电导体, 并计算了其散射截面(图1(b)中黑线). 另外从实际实验考虑, 还在图1(b)中给出了由实际金属银和铜材料制成的人工表面等离激元结构的归一化散射截面, 并分别用蓝色和红色实线表示. 从图1(b) 可以发现, 在结构的散射谱中有一个频率为f = 0.2684 THz的共振峰. 为了进一步确认这些共振峰的模式, 给出了该频率下结构的近场分布Hz, 如图1(c)所示, 可以发现该共振峰对应着磁偶极模式. 接下来, 将讨论结构参数对磁偶极子谐振频率的影响. 图2 (a)中的绿色实曲线显示了当R = 45 μm并且其他结构参数不变时, 随着结构螺旋度从π增加到3π时谐振频率的变化, 此时可以发现谐振频率是下降的. 此外, 也发现当R从45 μm依次降到15 μm时, 对应于磁偶极子模式的谐振频率发生了蓝移. 产生这种现象的原因是结构参数的变化影响位移电流圆的大小, 从而导致磁偶极子共振频率的偏移. 同样, 在图2(b)和图2(c)中也研究了对于不同的内半径r与a/d的情况下, 磁偶极子模式的谐振频率与螺旋度之间的关系. 这些结果表明, 可以通过裁剪结构几何参数自由地调整与结构中磁偶极子相关的共振响应. 图 2 (a)不同外半径下, 磁偶极子共振频率与螺旋度的关系, 图中的虚线和4条实线的交点代表对应于相同共振频率的4种结构; (b)不同内半径下, 磁偶极子共振频率与螺旋度的关系; (c) 对于不同的a/d, 磁偶极子共振频率与螺旋度的关系 Figure2. (a) The magnetic dipole resonance frequency as the function of spiral degree for different outside radii. The intersection of the horizontal dotted line and the four solid curves in the figure represent the four structures corresponding to the same resonance frequency; (b) the relationship between the resonance frequency of magnetic dipole and spiral degree at different inner radii; (c) for different a/d, the relationship between the resonance frequency of magnetic dipole and spiral degree.