Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11772145)
Received Date:31 May 2020
Accepted Date:28 June 2020
Available Online:09 November 2020
Published Online:20 November 2020
Abstract:A novel triple-walled carbon nanotube (TWCNT) screwing oscillator is proposed, in which screwing motion signals of both inner tube and middle tube are outputted simultaneously by applying an axial excitation to the inner tube and a rotating excitation to the middle tube. The molecular dynamic method is used to investigate the oscillatory behavior of the TWCNT oscillator under screwing motion. In the simulation process, the fixed outer tube acts as the oscillator stator, while the inner tube and the middle tube keep free oscillation after applying a certain initial excitation respectively. The simulation results show that the rotation frequency of the inner tube increases with the increase of the initial rotation excitation frequency of the middle tube when the inner tube is pulled out at a certain distance, and eventually tends to a stable value slightly lower than the rotation excitation. When the applied initial rotation frequency is within 400 GHz, the self-excited stable ration frequency ($ {\omega _{\rm{I}}}$) of the inner tube can be expressed as a function of the initial rotation excitation frequency ($ {\omega _{{\rm{M}}0}}$), $ {\omega _{\rm{I}}} = 46{{\rm{e}}^{0.0045{\omega _{{\rm{M0}}}}}}$. Although increasing the initial rotation excitation frequency can enhance the rotation frequency of the inner tube, as the initial rotation frequency of the middle tube increases, the axial performance of the inner tube is degraded and the unstable oscillations is aggravated. At the same time, the stability of the axial oscillation of the middle tube is related to the frequency of the initial rotational excitation applied to it. Too high an initial rotational frequency will not only increase the off-axis rocking motion distance, resulting in a degradation in axial oscillation performance, but also the rotation loss will increase as the initial rotation frequency increases. Therefore, a reasonable control of the amplitude of the initial rotation frequency is the key to designing a low-loss TWCNTs screwing oscillator. Keywords:triple-walled carbon nanotube/ screwing motion/ pull-rotate coupling/ molecular dynamics
中管质心位置随时间的变化图能直观地反映中管的振荡行为, 对TWCNT振荡器的内管施加初始拉出距离${Z_{{\rm{I0}}}}$恒为2 nm, 中管施加的初始旋转激励频率 ${\omega _{{\rm{M0}}}}$分别为100, 200, 400和600 GHz. 图2为中管在螺旋运动下的轴向振荡幅度情况. 中管的轴向振荡是在内管激励下发生的, 当${\omega _{{\rm{M0}}}}$在400 GHz以下时, 中管质心位置在沿轴向振荡过程中都能表现出稳定持续的振荡; 振荡的幅度为1.5 nm, 稍小于内管的振荡幅度, 一方面是因为中管的轴向振荡是由内管激发, 另一方面中管的原子数多于内管, 中管质量重, 同时中管还受到外管的约束力. 中管的轴向振荡频率约为22—20 GHz, 初始旋转频率的提高几乎不会影响中管的轴向振荡性能(${\omega _{{\rm{M0}}}}$在100—400 GHz这一范围). 当${\omega _{{\rm{M0}}}}$增加为600 GHz时, 中管的振荡幅度在振荡过程中逐渐变小, 且由于旋转频率太快导致非轴向摆动变得特别剧烈, 管的轴向振荡已表现出不稳定的振荡状态, 最终导致碳管两端受力不平衡而无法持续振荡. 故初始旋转激励频率的施加对中管轴向振荡的稳定性产生影响. 图 2 NVE过程中不同${\omega _{{\rm{M0}}}}$下的中管质心位置的历程图 Figure2. Histories of position of mass center of middle tubes (MCMTs) with different ${\omega _{{\rm{M0}}}}$ during the NVE process.
图3为中管在不同初始旋转频率下中管非轴向摆动剧烈程度, 当${\omega _{{\rm{M0}}}}$为100 GHz时, 中管的偏轴距离几乎为零; 随着初始旋转频率的增大, 管的偏轴距离也越大; 当${\omega _{{\rm{M0}}}}$为600 GHz时, 管的偏轴距离大幅度增加, 最大偏轴距离可达0.1 nm以上. 与${\omega _{{\rm{M0}}}}$为100 GHz的偏轴距离相比, 旋转频率为600 GHz的偏轴距离是它的50倍以上. 而与${\omega _{{\rm{M0}}}}$为200和400 GHz的偏轴距离相比, ${\omega _{{\rm{M0}}}}$为600 GHz的偏轴距离仍是它们的10倍以上. 因此, 初始旋转频率过高会导致管的非轴向摆动的加剧, 最终使中管的轴向振荡变得不稳定而无法持续振荡. 过高的旋转频率不仅对振荡过程中振幅产生衰减, 而且对自身旋转频率的损耗产生较大的影响. 图 3 NVE过程中不同${\omega _{{\rm{M0}}}}$下中管的偏轴距离 Figure3. The off-axis rocking motion distance of the MCMTs with different ${\omega _{{\rm{M0}}}}$ during the NVE process.
图4为中管初始旋转激励频率在螺旋运动过程中的损耗情况, 为方便比较, 用${\omega _{\rm{M}}}/{\omega _{{\rm{M0}}}}$表示任意时刻旋转频率的剩余百分比, 其中${\omega _{\rm{M}}}$为在不同的初始旋转激励频率下, 任意时刻的中管旋转频率. 从图中可以看出, 当${\omega _{{\rm{M0}}}}$为100和200 GHz时, 旋转频率损耗量在20%以内; 随着${\omega _{{\rm{M0}}}}$增加到400 GHz中管在螺旋运动过程中旋转频率损耗百分比也相应地增加; 当${\omega _{{\rm{M0}}}}$达到600 GHz时, 中管在轴向振荡过程中的旋转频率衰减加剧, 自由振荡2000 ps后, 旋转频率损耗约40%. 随着初始旋转激励频率的增加, 中管在螺旋运动过程中损耗的旋转频率越大, 因此合理控制初始旋转激励频率是设计低损耗振荡器关键的一环. 图 4 中管${\omega _{{\rm{M0}}}}$在螺旋运动过程中的损耗情况 Figure4. Rotational frequency dissipation of the MCMTs with different ${\omega _{{\rm{M0}}}}$ during the screwing motion.
23.2.内管的螺旋振荡性能 -->
3.2.内管的螺旋振荡性能
通过模拟发现, 施加的${\omega _{{\rm{M0}}}}$会刺激内管产生旋转运动, 且会对内管的轴向振荡产生影响. 在内管拉出长度为2 nm的前提下, 对中管施加100, 150, 200, 250, 300, 350, 和400 GHz的初始旋转激励频率, 研究不同初始旋转激励频率下内管的螺旋振荡性能. 图5为NVE过程中不同${\omega _{{\rm{M0}}}}$下内管质心位置的变化情况. 当施加的${\omega _{{\rm{M0}}}}$小于400 GHz时, 内管质心在轴向振荡中都能表现出持续稳定的振荡, 如图5(a)所示. 图5(b)是内管轴向振荡的频率(${f_{{\rm{ZI}}}}$)与${\omega _{{\rm{M0}}}}$之间的关系, 结果表明, 随着施加在中管上的${\omega _{{\rm{M0}}}}$的增加, 内管轴向振荡在2 ns内的平均振荡频率${f_{{\rm{ZI}}}}$越小. 特别注意的是, 当中管的初始旋转激励${\omega _{{\rm{M0}}}}$超过250 GHz后, 由于内管的质量小于中管, 其偏轴振荡更加严重(如图6所示), 导致内管的振荡频率和振幅的衰减都大于中管. 图 5 内管的轴向振荡 (a) NVE过程中不同${\omega _{{\rm{M0}}}}$下的内管质心位置变化曲线; (b)内管平均振荡频率${f_{{\rm{ZI}}}}$随${\omega _{{\rm{M0}}}}$的变化 Figure5. Axial oscillations of the inner tube: (a) Changes of the position of mass center of inner tubes(MCITs) with different ${\omega _{{\rm{M0}}}}$ in the NVE process; (b) ${f_{{\rm{ZI}}}}$ with respect to ${\omega _{{\rm{M0}}}}$.
图 6 NVE过程中不同${\omega _{{\rm{M0}}}}$下两管质心的偏轴距离 (a)内管质心; (b)中管质心 Figure6. The Off-axis rocking motion distance of mass center of (a) inner tube and (b) middle tube with different ${\omega _{{\rm{M0}}}}$ during the NVE process.
图7为不同初始旋转激励频率下的内管旋转频率. 内管的激发旋转频率会随着初始旋转激励频率的增加而增加, 激发频率的大小略低于中管的旋转频率, 且内管受激发的旋转频率会随着模拟时间的延长达到某一稳定值. 当${\omega _{{\rm{M0}}}}$在250 GHz时, 内管产生的旋转运动其速度在2000 ps将会达到稳定值; 当施加的${\omega _{{\rm{M0}}}}$超过250 GHz时, 内管的旋转频率达到稳定的时间将延长; 在350 GHz达到稳定转速所需的时间为4000 ps, 在400 GHz时, 内管的旋转速度达到稳定的时间至少要6000 ps. 结果显示, 内管旋转频率会随着初始旋转激励频率的增加而增大, 并且内管达到稳定转速的时间将相应延长. 图8为内管的旋转频率与中管初始旋转激励频率的关系图. 当初始旋转频率低于400 GHz时, 内管稳定的旋转频率${\omega _{\rm{I}}}$与施加的初始旋转激励频率${\omega _{{\rm{M0}}}}$可表示为 图 7 NVE过程中${\omega _{{\rm{M0}}}}$下内管的旋转频率 Figure7. Rotation frequency of the inner tube with different ${\omega _{{\rm{M0}}}}$ during the NVE process.