Institute for Advanced Materials, South China Academy of Optoelectronics, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
Fund Project:Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0201002, 2016YFA0300101), the National Natural Science Foundation of China (Grant Nos. 11674108, 51272078), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2015B090927006, 2019KQNCX028), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030308019, 2019A1515110707), and the Natural Science Foundation of South China Normal University, China (Grant No. 19KJ01)
Received Date:04 July 2020
Accepted Date:07 September 2020
Available Online:02 November 2020
Published Online:05 November 2020
Abstract:Exotic ferroelectric topological states (such as vortex state) have received intensive attention in the past decade, creating a new area for exploring the emerging physical phenomena and functionalities, as well as new applications (such as memory). In recent years, a series of discoveries in novel topological states, such as vortex, central domain, skyrmion and meron states, has inspired an upsurge of research interests. Moreover, the effort to manipulate such a topological domain structure hints the possibilities for the local, deterministic control of order parameters so that the static interface conductivity can be successfully controlled at topologically protected domain walls. These encouraging discoveries create a new avenue to the fertile emerging physic phenomena, and offer new possibilities for developing potential high-performance materials and new nano-electronic devices based on these exotic states. In the past decade, this field has developed rapidly and become a hot research topic in ferroelectrics. In this paper, we review the recent progress in the field of exotic topological state in nanoferroelectrics, and discuss some existing problems and potential directions. Keywords:topological defects/ polarized topological states/ ferroelectric domains/ nanoferroelectrics
全文HTML
--> --> --> -->
2.1.极化通量闭合畴(flux-closure)与涡旋畴(vortex domain)
超薄膜/超晶格体系中通量闭合畴和涡旋畴. 2004年, Naumov等[42]和Kornev等[18]通过第一性原理模拟, 预测了在小尺度受限体系中存在极化弯曲, 以及通量闭合的涡旋态. 在几纳米尺度(与本征畴壁宽度相当)的铁电纳米岛或薄膜中, 退极化作用较为显著, 可在界面/表面或者畴壁处发生极化弯曲, 为形成复杂性的奇异拓扑畴创造了有利条件. 更有趣的是, 在铁电纳米点中可能存在小至3.2 nm的双稳态涡旋态, 且相邻近涡漩态之间相互干扰很弱, 有望用于开发存储密度超过60 Tbit/in2的超高密度存储器[42]. 这一预测为寻找铁电拓扑畴指出了小尺度体系的方向, 也激起了实验和理论上探求的热情. 然而因拓扑畴稳定的尺度太小, 实验的证据依然长时间萍踪难觅. 直到2011年, Jia等[28]用实验观测证实了铁电极化卷曲的存在, 通过原子尺度分辨率的负球差像差校正HRTEM观察到了Pb(Zr,Ti)O3 (PZT)薄膜在畴壁与衬底之间的接合处存在极化卷曲. 同年, Nelson等[27]也在BFO薄膜的畴壁附近发现了一种类似三角状通量闭合的畴结构. 这说明, 在小尺度范围内, 退极化作用有可能导致极化弯曲, 使得形成通量闭合畴成为可能. 2015年, Tang等[19]在GdScO3 (GSO)衬底上沉积的PTO/STO多层膜中取得突破性进展, 发现有规则的方形通量封闭畴阵列(见图2(a)). 通过设计STO/PTO/STO 三明治结构, 有效地降低了空气电荷对退极化的屏蔽, 终于在尺寸受限 (15—40 nm厚)的PTO薄膜中获得了类似磁性材料中的方形通量闭合畴. 值得一提的是, 在尺寸较大的体系中, 极化更容易沿着晶体对称性许可的方向, 并通过铁弹型畴壁产生90°弯曲, 从而形成方形通量闭合畴, 而不是能量更高的连续卷曲型涡旋畴. 不久, Yadav等[20]在DyScO3 (DSO)衬底上制备了具有更薄PTO层 (~4 nm) 的(PTO)n/(STO)n超晶格, 并最终获得了稳定的涡旋排列畴结构(见图2(b)). 这个结果很好地验证了Naumov等[42]的预测, 也说明了超小尺寸约束对形成和稳定极化涡旋畴起到至关重要的作用. 此外, Alexe小组[43]也在Co/PTO/(La,Sr)MnO3/STO铁电隧道结中只有几个纳米厚的PTO层中观察到超小尺度极化弯曲和通量闭合畴(直径约2 nm). 这表明在尺寸足够小的体系中(例如 < 10个晶胞), 即使退极化场被电极部分屏蔽, 仍旧可以产生极化卷曲与通量闭合畴. 图 2 (SrTiO3)n/(PbTiO3)n多层膜和超晶格中观测到的涡旋畴结构 (a) 左边为多层膜中利用透射电镜数据计算的应力分布图, 右边为基于透射电子显微图像计算出的极化分布局部放大图[19]; (b) 左边为更薄的超晶格中透射电子显微镜的暗场像, 右边为基于透射电子显微图像计算出的单个涡旋极化分布放大图[20]; (c) (SrTiO3)n/(PbTiO3)n 超晶格结构中不同拓扑畴结构变化与原子层数n关系的相图[44] Figure2. Vortex domain states in (SrTiO3)n/(PbTiO3)n multilayers and superlattices: (a) The left panel presents the geometric phase analysis (GPA) image, the right panel is a local polarization distribution map for a single closure domain[19]; (b) the left panel is a cross-section dark-field TEM image of (SrTiO3)n/(PbTiO3)n superlattices, and the right panel is the local magnification of polarization distribution of a single vortex structure[20]; (c) a calculated phase diagram for (SrTiO3)n/(PbTiO3)n illustrating the length scales within which different topological states can be stabilized[44].
与涡旋畴相呼应的是另一种引人注目的中心型拓扑畴, 其极化矢量水平投影都指向中心或从中心向外发散, 形成中心汇聚或中心发散的畴结构[21,24]. 相较于涡旋畴难以在纳米岛上稳定形成, 中心型拓扑畴可以稳定形成且重复性较高. 2017年, Li等[24]报道称, 在高密度BFO纳米岛(直径约60 nm)阵列中观察到自发形成的中心型拓扑畴, 如图3(a)所示. 利用矢量PFM成像进行三维畴结构分析并重构的方法, 在纳米岛阵列中发现中心汇聚型、中心发散型和双中心型等多种中心型拓扑畴. 更令人兴奋的是, 通过对纳米岛施加外电场, 这些拓扑畴可以在中心汇聚和中心发散的两态间可逆切换, 且写入的拓扑畴能够长时间保持稳定. 这使得利用中心型拓扑畴的两种不同构型进行数据的存储和擦写成为可能, 因此引起广泛关注. 图 3 BiFeO3纳米岛中的中心型拓扑畴结构 (a) 在SrTiO3衬底上的BiFeO3纳米岛阵列中四种典型中心型拓扑畴结构的矢量PFM图像[24], 其中A图为中心汇聚型拓扑畴, B图为中心发散型拓扑畴, C图为双中心畴, D图为反双中心畴, E图为相场模拟获得的两种中心畴的极化分布图; (b) 在Nb-SrTiO3衬底上的BiFeO3纳米点中的中心型拓扑畴[23], 其中A图为在单个BiFeO3的面内TEM像, B图为对应区域的原子级分辨率的HAADF-STEM图像, C图为基于TEM图像计算出的极化分布局部放大图, 对应于B图中白色方框区域, D图为中心型拓扑畴的极化矢量分布; E图为BiFeO3纳米点中的中心型拓扑畴结构分布示意图 Figure3. Topological center-domain structures in BiFeO3 nanoislands: (a) Four types of center-domain states in BiFeO3 nanodots on SrTiO3 substrate observed by vector PFM analysis[24], where panel A illustrates the center-convergent, panel B illustrates the center-divergent, panel C illustrates the double-center domain with convergent, panel D illustrates the divergent center states, and panel E illustrates the cylinder model for phase-field simulation and two type of polar vector contour maps derived from the simulation; (b) topological center-domain states in BiFeO3 nanodots on Nb-SrTiO3 substrate[23], where panel A and B illustrate the plan-view TEM image for a single nanodot and atomically resolved HAADF-STEM images corresponding to the red square area in panel A, panel C is local magnified view of polarization distribution calculated by TEM corresponding to the white square area in panel B, panel D is the polarization vector distributions of the nanoisland, panel E is the schematic of domain configuration in these BFO nanoislands based on the analysis of both PFM and TEM characterization.
随着对极化拓扑畴研究的深入, 一些新颖的拓扑态也在近两年逐渐被揭示出来. Das等[25]在以STO为衬底的(PTO)n/(STO)n (n~16)超晶格中(STO衬底具有较大压缩应变)发现类似于磁性斯格明子的泡状极化斯格明子(见图4(a)). 尽管铁电超晶格体系中不具备类似磁性斯格明子形成所需要的Dzyaloshinskii-Moriya (DM)交换作用, 但仍可观察到极化斯格明子的长程手性序, 其形成机理还未能很好解释. 不过, 这类极化斯格明子的形成可能与自发形成的柱状畴(环形闭合畴壁)有关. 因为超晶格中局域电场和应力场很强, 一方面可诱导畴壁弯曲形成面内极化, 同时还使得畴壁周边的极化结构发生旋转, 最终形成了极化斯格明子态. 这种独特的极化斯格明子态的发现, 使人们更为确信在铁电体系中也可找到与磁性体系类似的拓扑畴结构. 图 4 铁电斯格明子和麦韧拓扑态 (a) SrTiO3衬底上的(SrTiO3)n/(PbTiO3)n超晶格中的极化斯格明子阵列[25], 其中上图为暗场下的截面TEM图像, 中图为暗场下的面内STEM图像, 下图为计算得出的极化斯格明子的结构图像; (b) SmScO3衬底上的PbTiO3薄膜中的麦韧态[26], 其中上图为截面HAADF-STEM图像, 中图为计算出的对应区域应力分布图, 下图为计算得出的极化麦韧的结构 Figure4. The polar skymion bubble and polar meron states: (a) Polar skyrmion bubbles in a (SrTiO3)n/(PbTiO3)n superlattice on SrTiO3 substrate[25], where the upper panel is a cross-section dark-field TEM image, the middle panel is a planar-view dark-field STEM image, and the bottom panel is chematic skyrmion bubble configuration from calculations; (b) polar merons in a untrathin PbTiO3 film on SmScO3 substrate[26], where the upper panel is the cross-section HAADF-STEM image, the middle panel is the corresponding geometric phase analysis (GPA) image, and the bottom panel is a meron configuration from calculations.