1.School of Information Science and Engineering, Yunnan University, Kunming 650091, China 2.College of Science, Yunnan Agricultural University, Kunming 650201, China
Abstract: In this paper, we have proposed a multiband plasmon-induced transparency (PIT) hybrid model based on silver nanorods, silver nanodisk and graphene. The electromagnetic properties are numerically and theoretically studied in this paper. The research results show that using the bright-bright mode coupling between silver nanorods and silver nanodisk, based on the weak hybridization effect induced by the detuning of each bright mode unit, the single-band, dual-band and triple-band PIT effects can be achieved. By changing the chemical potential of graphene, the tunability of the resonant frequencies and transmission amplitude can be achieved simultaneously in each PIT model. When the chemical potential of graphene is 0 in each of the three PIT models, that is, without graphene, the resonant frequencies of its transparent window is the smallest. As the chemical potential of graphene increases from 0 to 0.5 eV, the resonant notches of the transparent peak in all three PIT models are both enhanced and blue shifted. Especially, when the chemical potential is 0.5 eV, the absolute increment of resonance notch generated by the sing-band PIT transparent window is $\Delta f = 1.01$ THz and the relative increment is 2.91% while the largest absolute increment of resonance notch generated by the dual-band PIT transparent window is $\Delta f = 1.77$ THz and the largest relative increment is 5.97%. In the next place, when the chemical potential is 0.3 eV, the absolute increment of resonance notch generated by the triple-band PIT transparent window is $\Delta f = 1.26$ THz and the relative increment of the window is 4.02%. On the other hand, when graphene is existent in none of the three models, the resonance between silver nanodisk and silver nanorods, and the resonance between silver nanorods and silver nanorods are the weakest and the transmission amplitude of transparent window is the strongest in each of the three PIT models. Thereafter, with the increase of chemical potential, the number of surface charges on the silver nanodisk and silver nanorods increases and the intensity of electric field is enhanced. At the same time, the coupling strength between silver nanodisk and silver nanorods, and the coupling strength between silver nanorods and silver nanorods are also gradually enhanced. As a result, the transmission amplitude of each PIT model will gradually decrease. Especially, when the chemical potential is 0.5 eV, the amplitude modulation depth of the single-band PIT transparent peak is 20.2% and the amplitude modulation depth of the two transparent windows in dual-band PIT model are 31.2% and 24.2% respectively. In addition, when the chemical potential is 0.3 eV, the amplitude modulation depths of the three transparent windows in triple-band PIT model are 29.8%, 33.8%, and 20.5%. Finally, the sensing properties of the single-band PIT model are further investigated. The results show that the sensitivities of the model with refractive index of different background materials reach 3906.6 nm/RIU all, which provides a theoretical reference for the design of multiband filtering and ultrasensitive sensors. Keywords:multiband plasmon-induced transparency/ graphene/ finite difference time domain
4.单频段PIT模型仿真结果与分析图2给出了当石墨烯化学势$\mu {}_{\rm{c}} = 0.1\;{\rm{ eV}}$时, 单频段PIT模型的透射率曲线. 作为参考, 图2中同时给出了相同化学势条件下, 单独银纳米盘阵列、单独银纳米棒阵列的透射率曲线. 通过图2可以发现, 当光波入射方向沿–Z轴传播, 极化方向沿X方向时, 银纳米盘和银纳米棒阵列都产生了典型的洛伦兹线型的谐振, 故而可以将它们都视作被光场直接激发的明模, 因此基于银纳米盘和银纳米棒之间的明模-明模耦合, 模型产生了单频段的PIT效应. 同时, 在单频段PIT模型中, dip A和dip B分别与银纳米棒和银纳米盘阵列的谐振频率相一致, peak位于dip A和dip B之间, 与银棒和银盘阵列的谐振频率互不相等, 因此单频段PIT现象可以看作是两个明模单元失谐产生的[23]. 图 2 单银盘谐振器、单银棒谐振器、单频段PIT模型的透射曲线 Figure2. Transmission spectra of the sole disks array, the sole rods array, and the single-band PIT model.
为了进一步研究单频段PIT模型的物理原理, 图3给出了图2中dip A, dip B, peak处电场分量${E_y}$的分布. 由图3可知, 在dip A处, 由于其与银纳米棒阵列的谐振频率相一致, 所以${E_y}$呈典型的电偶极模式分布, 电场主要集中在银纳米棒的边缘和末端. 类似地, 在dip B处, 由于其与银纳米盘谐振频率相一致, 因此, ${E_y}$也呈典型的电偶极模式分布, 电场主要集中在银纳米盘的边缘附近. 在peak处, 银纳米盘和银纳米棒同时被激发, 但电场强度明显小于dip A和dip B处, 因此单频段PIT是两个明模单元失谐后弱杂化效应的结果. 图 3 单频段PIT模型在 (a) dip A, (b) dip B和(c) peak的电场分布 Figure3. Distributions of electric field of single-band PIT model at (a) dip A, (b) dip B, and (c) peak.
为了分析单频段PIT模型透射振幅和谐振频率的可调性, 图4分析了石墨烯化学势改变时, 模型谐振频率和透射振幅的变化情况. 首先, 当石墨烯化学势为0 eV即不含石墨烯时, 透明窗口的谐振频率最小, 等于34.6465 THz. 当石墨烯化学势等于从0 eV增大到0.5 eV时, 谐振频率逐渐增大, 发生蓝移. 谐振频率绝对增量$\Delta f = 1.01$ THz, 相对增量为2.91%. 图 4 单频段PIT模型改变石墨烯化学势时, 谐振频率和透射振幅随频率的变化情况 Figure4. Variations of resonant frequency and amplitude in transmission with frequency under different chemical potential of graphene in single-band PIT model.
其中${T_{\rm{g}}}$和${T_0}$分别为模型包含和不包含石墨烯时的透射振幅. 当模型不含石墨烯时, 透射振幅最大, ${T_0} = 0.8957$. 当化学势增大时, 模型透射振幅逐渐减小. 当石墨烯化学势等于0.1 eV时, ${T_{od }} = 10.1\% $; 当化学势增大到0.5 eV时, ${T_{od }} = 20.2\% $. 可以预见, 当化学势进一步增大后, ${T_{od }}$还将会进一步增大. 因此, 通过改变石墨烯的化学电位势, 可以在单频段模型中同时实现谐振频率和透射振幅的可调性. 为了从理论上研究单频段PIT模型的可调性, 图5和图6给出了石墨烯化学势从0 变化到0.5 eV时, FDTD仿真结果与RTO理论结果的比较. 通过对比可以发现, FDTD的数值结果和RTO的理论结果在整体趋势上基本一致, 验证了单频段PIT模型可以通过RTO模型进行理论分析. 同时, 通过图4—图6可以发现, 当石墨烯化学势变化时, 化学势的改变对纳米棒模式的影响比较明显, 但对纳米棒的影响不大, 其产生的原因可以解释为金属形状的改变而导致了纳米盘和纳米棒边界条件的不同, 进而造成了化学势影响的不同. 图 5 化学势为0和0.3 eV时, FDTD仿真结果与RTO拟合结果比较 Figure5. Comparisons of the PIT calculated by FDTD method and fitted by RTO model when chemical potential is 0 and 0.3 eV.
图 6 化学势为0.1 和0.5 eV时, FDTD仿真结果与RTO拟合结果比较 Figure6. Comparison of the PIT calculated by FDTD method and fitted by RTO model when chemical potential is 0.1 and 0.5 eV.
图7(a)给出了当石墨烯化学势改变时, RTO模型中各拟合参数随化学势的变化关系. 在图7(a)中, 参数$0.02 \times {\varOmega ^2}$随着化学势的增大而增大, 说明银纳米盘和银纳米棒之间的耦合强度逐渐增加. 参数${n_{\rm{s}}}{Z_0}$也随着化学势的增大而增大, 说明银纳米盘和银纳米棒表面电荷数不断增大, 表面电场强度不断增强. 因此, 单频段PIT模型透射振幅的下降, 振幅调制深度的增加可以看成是银纳米盘和银纳米棒表面电荷数不断增大, 表面电场强度不断增强, 银纳米盘和银纳米棒之间的耦合强度不断增加的结果. 同时, 通过图7(a)发现, 化学势的改变对${\gamma _2}$有着较大影响, 因此本文在原先RTO模型的基础之上引入修正因子$3 \times {\gamma _2}$, 将原先${\sigma _{\rm{e}}}$的计算公式改变为 图 7 (a) 当化学势由0 变化到0.5 eV时, RTO模型中各拟合参数随化学势的变化关系; (b) 引入修正因子后新的拟合结果 Figure7. (a) The fitting values of parameters in RTO model with the chemical potential of graphene varying from 0 to 0.5 eV; (b) new fitting result after introducing correction factor.
图 9 单频段PIT模型 dip A, dip B和peak随背景材料折射率的变化规律 Figure9. Variations of dip A, dip B, and peak with the different background materials in single-band PIT model.