1.College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China 2.School of Science, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:In order to enhance the working performance of existing temperature sensor and refractive index sensor of sub-wavelength waveguide, the design of ring regular octagon surface plasmon resonance sensor with sharp transmission peak, high sensitivity and high integration was proposed in this paper based on surface plasmon polaritons. The feasibility of using ethanol as a thermosensitive filler to establish a linear conversion relationship between temperature and effective refractive index was analyzed theoretically. The reason why the real part of effective refractive index changes abruptly with the change of waveguide width is also explained. The multimode interference coupled mode theory (MICMT) was used to fit and analyze the transmission peak of the sensor, and then the finite element methods (FEM) is used for simulation analysis. Results obtained by the theory of the MICMT are consistent very well with those from simulation. In order to obtain the optimal parameter setting of the ring regular octagon surface plasmon resonance sensor, various parameters of the sensor are simulated by FEM. It is found that increasing L and decreasing H will improve the sensitivity of the sensor, while decreasing parameter w can not only improve the amplitude of transmission peak, but also keep the sensitivity unchanged. This characteristic of parameter w greatly improves the robustness of the sensor. All kinds of physical phenomena in this paper are analyzed in detail. Firstly, the phenomenon of transmission peak displacement caused by parameter changes is explained through the analysis of magnetic field distribution, and then the phenomenon of inconsistent sensitivity of different transmission peaks is explained through photon energy formula. Compared with the previous structural design, the dual-purpose sensor has many advantages such as wide operating wavelength range, narrow full width at half maximum and easy to integrate. As a temperature sensor and refractive index sensor, its sensitivity was as high as 0.9 nm/℃ and 2400 nm/RIU. The study of this structure broke through the limitations of some traditional cavities, in order to provide a high- performance cavity selection for the micro-nano photon temperature and refractive index dual-purpose sensor based on the design of surface plasmon polaritons in the future. Keywords:surface plasmon polaritons/ temperature sensor/ refractive index sensor/ multimode interference coupled mode theory
全文HTML
--> --> -->
2.模型建立和理论分析本文设计的基于SPPs的等离子体温度传感器如图1 (a)所示. 该传感器由两个MIM波导和一个正八边环形共振腔非贯通耦合组成. 在正八边形环形腔体中利用毛细管吸引力将乙醇进行填充[24], 并利用银膜表面上的介电材料将乙醇密封在共振腔中, 其中蓝色、红色和淡黄色部分分别表示乙醇、银和石英基底, MIM波导狭缝部分用空气进行填充. 热光系数是衡量单位温度变化对折射率影响的参数, 石英的热光系数大约等于$8.6 \times {10^{ - 6}}$[26], Ag的热光系数大约为$9.3 \times {10^{ - 6}}$[27], 之所以选择乙醇作为填充材料是因为它的热光系数和石英、Ag相比大约高出两个数量级, 在乙醇敏感的温度条件下石英和银的折射率几乎不受影响. 仿真三维结构对硬件的配置和网格的划分有较高要求, 而三维结构的磁场特性与二维结构不会产生严重的分歧, 为节省内存本文使用COMSOL Multiphysics软件进行二维建模, 如图1 (b)所示. d为波导宽度, H为内外环之间的距离, L为正八边环形的外边长, w为波导和腔体之间的耦合距离. 图 1 正八边环形共振腔MIM波导结构示意图 (a)三维模型; (b) 二维模型 Figure1. The structure schematic of two slits MIM SPPs waveguides with a regular octagon ring resonator: (a) 3D model; (b) 2D model.
其中T0 = 20 ℃为室温, T为环境温度, 有效折射率实部$ {n_{{\rm{eff}}}} = {\rm{Real}}(\beta/{k_0}) $. 利用Newton-Steffensen迭代法对SPPs色散方程(1)式进行求解. 如图2所示, 计算结果为有效折射率实部、入射波长和波导宽度的三维关系图. 图 2 (a) T = 20 ℃时, 有效折射率实部与入射波长和波导宽度的关系图; (b) d = 50 nm时, 有效折射率实部与入射波长和温度的关系图 Figure2. (a) The real part of ${n_{{\rm{eff}}}}$ as functions of wavelength and d when T = 20 ℃; (b) the real part of ${n_{{\rm{eff}}}}$ as functions of wavelength and T when d = 50 nm.
在上述透射率简化公式中, 总耦合相位差${\varphi _n}$可近似地视为常数. ${\phi _n}$是第n个共振模式的输出相位和输入相位之差. ${\tau _{n0}}$表示第n个模式的内损耗衰减时间, 该系统波导S1和波导S2的宽度相等且对称于共振腔体, 因此有${\tau _n}={\tau _{n1}}={\tau _{n2}}$, ${\tau _n}$为波导和共振腔中第n个共振模之间耦合的衰减时间. ${\varphi _{n1}}$为波导S1和共振腔中第n个共振模式的耦合相位. $ {\gamma _{n1}} $为归一化系数,这里$ \gamma_{n1} \approx 1 $. $\lambda $和${\lambda _{n0}}$分别为入射波长和共振波长. 这里设置L = 300 nm, H = 250 nm, w = 10 nm, d = 50 nm. 该系统的仿真结果和理论计算结果对比如图3 (a)所示. 值得注意的是, 由于波导内不同模式之间也存在能量交换, 相邻模式之间的影响最为突出. 所以为保证计算结果的准确性, 在Peak I的左边多取一个模式(${\lambda _0} = 660\;{\rm{nm}}$)进行分析(该模式未在文章中表示出来), 透射峰Peak I (${\lambda _{10}} = 714\;{\rm{nm}}$), Peak II (${\lambda _{20}} = 776\;{\rm{nm}}$), Peak III (${\lambda _{30}} = 884\;{\rm{nm}}$), Peak IV (${\lambda _{40}} = 1212\;{\rm{nm}}$)和Peak V (${\lambda _{50}} = 2234\;{\rm{nm}}$)的磁场$\left| {{H_z}} \right|$分布如图3 (b)—(f)所示. 从图3 (b)—(f)中可以看出, 这五种模式在正八边环形腔和波导中均出现驻波共振, 使得入射光可以通过共振腔并出射形成透射峰. 将Peak III和Peak V的磁场图进行比较, 可以看出Peak III在腔体内的磁场分布更弱, 在波导S2内的磁场分布更强, 而Peak V的磁场分布恰恰相反. 这说明当腔体内的能量分得越多时, 出射波导的能量分得越少, 从而导致更小的透射峰幅值. 图 3 (a) 该温度传感器的透射率仿真值和理论值对比图; (b) Peak I的磁场分布图, ${\lambda _{10}} = 714\;{\rm{nm}}$; (c) Peak II的磁场分布图, ${\lambda _{20}} = 776\;{\rm{nm}}$; (d) Peak III的磁场分布图, ${\lambda _{30}} = 884\;{\rm{nm}}$; (e) Peak IV的磁场分布图, ${\lambda _{40}} = 1212\;{\rm{nm}}$; (f) Peak V的磁场分布图, ${\lambda _{50}} = $ 2234 nm Figure3. (a) Comparison of the simulation and the theoretical results of transmittance of the temperature sensor; (b) the magnetic field $\left| {{H_z}} \right|$ of peak I at ${\lambda _{10}} = 714\;{\rm{nm}}$; (c) the magnetic field $\left| {{H_z}} \right|$ of peak II at ${\lambda _{20}} = 776\;{\rm{nm}}$; (d) the magnetic field $\left| {{H_z}} \right|$ of peak III at ${\lambda _{30}} = 884\;{\rm{nm}}$; (e) the magnetic field $\left| {{H_z}} \right|$ of peak IV at ${\lambda _{40}} = 1212\;{\rm{nm}}$; (f) the magnetic field $\left| {{H_z}} \right|$ of peak V at ${\lambda _{50}} = 2234\;{\rm{nm}}$.
3.结果与讨论下面将通过光谱分析研究该传感器的温度传感特性. 当参数设置为H = 250 nm, L = 300 nm, w = 10 nm, d = 50 nm时. 图4 (a)和图4 (b)所示为温度从60 ℃以步长40 ℃递减到–100 ℃的透射光谱图. 在690—2500 nm范围内出现5个透射峰: Peak I, Peak II, Peak III在图4(a)所示的690—1000 nm范围内; Peak IV, Peak V在图4(b)所示的1000—2500 nm范围内, 图4(b)中的子图表示透射峰Peak IV的共振波长所在峰的放大图. 由图4可知, 随着温度减小五个透射峰均出现了红移现象. 固定波导宽度, 乙醇的折射率随温度的降低而增加, 从而使得温度传感器的有效折射率增加, 如图2 (b)所示. 温度传感器的有效折射率决定腔内产生驻波共振的波长, 驻波共振波长发生变化促使透射光波长也发生变化, 表现出透射峰红移的现象. 图 4 温度变化时该温度传感器的透射光谱图 (a) 入射波长范围为690—1100 nm, Peak I, Peak II, Peak III在该光谱范围内; (b) 入射波长范围为1000—2500 nm, Peak IV, Peak V在该光谱范围内 Figure4. The transmission spectra of the temperature sensor under different T: (a) Peak I, Peak II and Peak III in the wavelength range of 690 nm to 1100 nm; (b) peak IV and Peak V in the wavelength range of 1000 nm to 2500 nm.
为了直观地展示由温度改变引起的传感器性能变化, 给出每个透射峰随温度变化时的共振波长取值图, 如图(5)所示. 可以看出, 五个峰都与温度具有极其良好的线性关系. 在–100—60℃之间取20 ℃为步长, 各个透射峰(依次为Peak I, Peak II, Peak III, Peak IV, Peak V)的位移量分别为4, 5, 6, 7, 13 nm, 透射峰的共振波长和温度之间存在严格的线性关系, 这种线性关系极大地确保了温度测量的精准性. 通过温度传感器的灵敏度定义式${\rm{d}}\lambda/{\rm{d}}T$可以得出Peak I, Peak II, Peak III, Peak IV和Peak V的灵敏度分别为0.2, 0.25, 0.3, 0.35, 0.65 nm/℃. Peak V的灵敏度最高是因为电磁波具有波粒二象性, 且传播的能量是光子能量的整数倍数. 在总功率不变的情况下, 由光子能量大小计算式可知, 波长越大, 光子能量越小, 进行能量传输的光子数量越多, 电磁传播过程受介质的影响越大. 所以当温度引起折射率变化时共振波的波长越大透射峰灵敏度越大. 图 5 五个透射峰的共振波长与温度T的关系 Figure5. The relationship between the resonance wavelength and T of the five transmission peaks.
由于SPPs对波导尺寸具有敏感性, 接下来将研究参数H和L对该温度传感器光谱特性的影响. 如图6 (a)和图6(b)所示, 在固定参数L的情况下增大参数H, 透射峰Peak II, Peak III, Peak IV和Peak V均发生了位移. 该现象可以通过磁场分析进行解释. 从图3 (c)中可以看出, Peak II的磁场能量主要沿着正八边环形的内环(简称为内八边形)一圈进行均匀分布. 由此可见内八边形大小对该共振模式有很大的影响. 在固定L的情况下, 随着H的增大, 内八边形被明显压缩使得分布在内八边形一圈的磁场也跟着明显缩小, 继而表现出明显的波长位移. 以上述的方法对余下的三个透射峰进行分析. 通过观察Peak III, Peak IV和Peak V的磁场图, 发现图3 (d)的磁场主要分布在正八边环形外环(简称为外八边形)的上下四个角和左右两个边, 在内八边形四周几乎没有磁场分布. 同理对于图3 (e), 磁场主要分布在上下左右四个边上, 在内八边形四周只有微弱的磁场分布, 所以H的变化对于透射峰的位移影响是微弱的. 而对于图3 (f), 内八边形周围的磁场分布是显而易见的. 随着H的增大, 内八边形被明显压缩, 磁场分布受内八边形尺寸的影响越大, 共振波长的位移越明显. 由此可以预料到Peak V的位移最明显, Peak III的位移最不明显. 该预测结果和图6 (a)和图6 (b)中的仿真结果一致. 接下来将固定参数H来讨论L对该系统透射峰的影响. 固定H增大L相当于将正八边环形等比例放大, 因此无论各个透射峰的磁场在共振腔中如何进行分布, 磁场分布几乎都是等比放大, 因此波长会出现等比位移的情况, 如图6 (c)所示. 共振腔面积的增大还会导致更多的能量被吸收, 使得透射峰的振幅变小. 除了这些物理机理的解释, 我们更关心参数对灵敏度的影响. 从图6 (d)和图6(e)中可以看出, 灵敏度随着L的增大而明显增大, 随着H的增大而略微减小. 因此在合理范围内增大L减小H会提高该温度传感器的灵敏度. 图 6 改变参数H的透射谱图 (a) 在740—1025 nm的入射波长下; (b) 在1000—2500 nm的入射波长下. (c) 在1000—3000 nm的入射波长下, 改变参数L的透射谱图; (d) Peak V和Peak IV的灵敏度和参数H的关系图; (e) Peak V和Peak IV的灵敏度和参数L的关系图 Figure6. The transmission spectra of the structure under different H: (a) In the wavelength range of 690 nm to 1100 nm; (b) in the wavelength range of 1000 nm to 2500 nm. (c) the transmission spectra of the structure under different L in the wavelength range of 1000 nm to 3000 nm; (d) the relationship between sensitivity of Peak V and Peak IV and parameter H; (e) the relationship between sensitivity of Peak V and Peak IV and parameter L.
增大L减小H都能提高温度传感器的灵敏度, 但是不管是增大L还是减小H都会导致透射峰的振幅减小, 换言之, 灵敏度的增大是以牺牲透射峰的振幅为代价的. 因此怎样既保证灵敏度不变又提高透射峰振幅是接下来要研究的内容. 如图7 (a)所示, 随着耦合距离w值的减小, 4个透射峰振幅均出现了明显的增强, 这是因为波导和共振腔之间的耦合距离减小而导致光的耦合强度增大, 从而提高了光在波导和腔体之间能量传输的能力. Peak V的透射峰振幅在w = 5, 10 nm时分别取0.59202, 0.35116, 减小耦合距离, 透射峰振幅提高至1.686倍. Peak IV的透射峰振幅在w = 5, 10 nm时分别取0.81618, 0.66506, 透射峰振幅提高至1.227倍. 图7 (c)为在不同入射波长情况下, 5个透射峰随w变化的透射光谱图, 从图中更能直观地看出随着w的减小透射峰的透射强度在逐渐增强. 如图7 (b)所示, T从20 ℃变化至–20 ℃, 无论w取5 nm还是10 nm, Peak IV的移动距离均为14 nm. 同样, 如图7 (d)所示, 在上述相同条件下, Peak V的移动距离为26 nm. 这足以说明增大w不仅能提高透射峰振幅, 还能使灵敏度保持不变. 因为耦合距离w对灵敏度几乎没有影响, 所以在进行工艺加工时微小的尺寸偏差不会对该传感器的性能产生影响, 精度要求不高, 加工工艺的容错度更高, 传感器光电器件的鲁棒性更好. 图 7 (a) 在不同的w取值下的透射谱图; (b) Peak IV在w = 5 nm和w = 10 nm时温度从20 ℃变到–20 ℃时共振峰位移量对比图; (c) 在w不同取值情况下随入射波长变化的透射光谱图; (d) Peak V在w = 5 nm和w = 10 nm时温度从20 ℃变到–20 ℃时共振峰位移量对比图 Figure7. (a) The transmission spectra of the structure under different w; (b) when the temperature changes from 20 ℃ to –20 ℃, the displacement of Peak IV at w = 5 nm and w = 10 nm; (c) the transmission spectra of the structure with different wavelength and w; (d) when the temperature changes from 20 ℃ to –20 ℃, the displacement of Peak V at w = 5 nm and w = 10 nm.
在对各个参数进行分析后可以总结出H = 220 nm, L = 360 nm, w = 5 nm, d = 50 nm的最佳参数设置. 如图8 (a)所示, 最佳参数设置下的温度传感器Peak V, Peak IV, Peak III, Peak II和Peak I这五个透射峰的灵敏度分别为0.9, 0.45, 0.35, 0.2和0.2 nm/℃. 如果将正八边环形腔内的乙醇换成其他介质材料, 该传感器还能用作折射率传感. 如图8 (b)所示, 作为折射率传感器, 以上五个透射峰的灵敏度分别为2400, 1200, 800, 600和400 nm/RIU. 本文与其他已报道文献的设计对比如表1所列.
表1各类温度传感器和折射率传感器性能比较 Table1.Performance comparison of various temperature sensors and refractive index sensors.
图 8 (a) 该系统作为温度传感器时, 在T = 20 ℃和T = –20 ℃下的透射谱图; (b) 该系统作为折射率传感器时, 在n = 1和n = 1.01下的透射谱图 Figure8. (a) When the system is used as a temperature sensor, the transmission spectra at T = 20 ℃ and T = –20 ℃; (b) when the system is used as a refractive index sensor, the transmission spectra at n = 1 and n = 1.01.
品质因子(figure of merit, FOM)是波长灵敏度与FWHM的比值[31,33]. 从表1可以看出, 该传感器具有高灵敏度、高FOM值、多工作峰、工作波段范围广、FWHM窄的优点. 而透射峰尖锐、波谷低、振幅高等其他优点不仅为检测提供了便利, 更是提高了差动相减处理计算过程的准确性. 比以往研究报道的同类MIM波导温度传感器和折射率传感器工作性能都全面[14,15,26,28].