1.Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 2.University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:We propose a scheme to create a ring magnetic guide based on Archimedean spirals. This scheme is significant to obtaining large circle area for atom interference and the realization of guided atom-interferometer gyroscopes. Then the scheme can be used to realize an inertial sensing system which is independent of the GPS system.The wires structure with $ {\text{π}}/3$ rotational symmetry is composed of three wires. Each wire is centrosymmetric and consists of a pair of Archimedean spirals connected by two arcs. Consequently, the leading wire ends of the layout can be arranged separately in the different place of the layout plane. If the leading wire ends are put together somewhere, the closed ring guide cannot form and a gap appears in the guide due to the concentrated distribution of the leading wire ends. Since the leading wire ends distribute in the different location with $ {\text{π}}/3$ rotational symmetry in our scheme, when direct currents are applied, the closed ring trap can be generated ingeniously.We calculate and analyze the magnetic field distribution generated by our structure after loading currents in the cylindrical coordinates system. To get higher sensitivity compared to GPS and make the ring trap locate in a proper height above the chip surface, we set the initial radius of Archimedean spirals $ a=5\ {\rm{mm}}$ and the distance between neighboring spirals $ d=0.1\ {\rm{mm}}$. When three wires carry direct currents in an opposite current-phase-difference between the adjacent wires, a closed ring magnetic guide indeed appears but with six zero magnetic field points along the guide center. Because of the variation of the current density along r direction in Archimedean spirals, the magnetic field of the guide center is not zero at most angle. However, the variation cannot avoid the existence of zero points and the distribution of the zero points is determined by the rotational symmetry of the wires structure.Since atoms near the zero points of the magnetic field would be lost from the trap, the zero points must be removed from the center of the ring guide. Based on the time-orbiting-potential principle (TOP), we add an ac current modulation on the direct currents above to eliminate the influence of the zero points of the guide center. We give the ac current expressions and discuss the effects of currents parameters on the ring guide. The current phase reflects how the currents change in three wires. The modulation depth determines the effect of the modulation: if the modulation depth is too high, the trap may disappear; if the modulation depth is too low, the effect is minimal. The modulation frequency reflects the change rate of the modulation magnetic field.To ensure the smoothness of the guide along angular direction and adiabatic following of the magnetic field, we set the modulation depth $ I_j/I_i=0.1$, the current-phase $ \phi=2{\text{π}}/3$ and the modulation frequency $ \omega_b=2{\text{π}}\times10\ {\rm{kHz}}$. The numerical calculation results indicate that ac current modulation can change the magnetic field intensity of the guide center and smooth the variance of the magnetic field intensity of the guide along angular direction. We take the cross section of the guide with $ \theta={\text{π}}/2$, for example. The minimum of the instantaneous magnetic field rotates and our structure has formed a TOP trap in both the r and z directions. In angular direction, the magnetic field intensity of the guide center changes near $ 0.25\ {\rm{mT}}$. The difference between the maximum and the minimum is $ \Delta\,B\approx0.007\ {\rm{mT}}$ which is small enough compared to applying direct current only.Therefore, based on the Archimedean spirals and ac current modulation, we obtain an enclosed and smooth ring magnetic guide without zero magnetic fields along the guide center for neutral atoms. The location of the guide center also changes along the angle direction. The amplitudes of variation along r and z directions are $ \Delta r=0.015\ {\rm{mm}}$, $ \Delta z=0.005\ {\rm{mm}}$, which are $ \Delta r/l\approx0.3\,\%$, $ \Delta z/l\approx0.1\,\%$ compared with $ l\approx2{\text{π}} a/6\approx5.236\ {\rm{mm}}$.Compared to other schemes, our structure can be etched on an atom chip and is easily to apply modulation currents, which is simple and stable to form a ring magnetic guide. This scheme can be used to realize a compact, low power and stable inertial sensor based on atom-chip gyroscope device. Keywords:ring magnetic guide/ Archimedean spirals/ atom chip/ AC modulation
全文HTML
--> --> -->
2.三线阿基米德螺线结构理想的环形磁导引可以基于理想同心三环线或四环线结构[27], 通过对导线加载相应的交流调制[28], 可以产生闭合光滑的且势阱中心无零点的环形势阱, 如图1所示. 图1(a)是理想的三环线布线结构, 图1(b)是相应的磁势阱. 图 1 (a)理想三环线结构, 其中箭头表示电流方向; (b)理想环形磁导引的磁场分布示意图, 图中的蓝色圆环部分为环形磁导引 Figure1. (a) The ideal structure of the three concentric ring wires. The arrows represent the direction of currents; (b) The magnetic field intensity distribution of the ideal ring magnetic guide. The blue circle marks the ring magnetic guide.
其中a为阿基米德螺线的起始半径, b为螺线半径相对于角度的变化率, 即$ {\rm d}r/{\rm d}\theta $. 采用阿基米德螺线结构可以避免引线端集中分布导致的缺口问题. 当按照特定的方式排列, 阿基米德螺线可以形成类似三环线的结构, 产生环形势阱[21,22]. 我们设计的三线阿基米德螺线结构如图2所示. 该结构主要包括三根相同的具有中心对称性构型的导线, 每根导线包含一对由圆弧连接的阿基米德螺线和两条直导线引线端, 每根导线间隔$ {\text{π}}/3 $的旋转角度交错排列在一起, 使得相邻两根阿基米德螺线的间隔相同, 且使整个结构具有以$ {\text{π}}/3 $为周期的旋转对称性. 于是, 这便巧妙地构成了六段首尾相接的三导线布局, 当加载电流后该结构便能够形成约束中性原子的环形磁势阱. 图 2 三线阿基米德螺线环形磁导引的布线结构, 其中黑色实线、红色点划线和蓝色虚线分别表示三根不同的导线, 每根导线的引线端分别用1, 2, 3表示, 箭头表示电流方向, 阿基米德螺线起始半径$a=5\ {\rm{mm}}$, 相邻螺线的间距d = 0.1 mm Figure2. Archimedean-spiral-based three wires structure of the ring waveguide. The black solid line, the red chain-dotted line and the blue dashed line denote three different wires respectively. The input and output ports of each wire are marked by 1, 2, 3 and the arrows represent the direction of currents. The initial radius of Archimedean spirals is $a=5\ {\rm{mm}}$ and the distance between neighboring spirals is $d=0.1\ {\rm{mm}}$.
其中$ I_{\rm i} $和$ I_{\rm j} $分别为所加载电流的直流成分和交流调制的幅度, $ \omega_{\rm b} $为调制频率, $ \phi $为不同导线加载的交变电流的相位差. 随着角度$ \theta $的变化, 三线阿基米德螺线结构的三根导线的相对位置不断变化, 为保证三根导线的电流相位差在一个环路内的变化相同, 我们设定电流相位差$ \phi = 2{\text{π}}/3 $. 我们发现, TOP方法不但能够移除导引中心的磁场零点, 而且也可以平滑在直流情况下环形势阱极小值在角度方向上的起伏. 这就是说, 在电流值给定的情况下, 尽管环形势阱中心是磁场强度的极小值, 但在不同的角度方向上该磁场极小值并不同. 因此, 在角度方向上导引中心的磁场强度存在极大值和极小值, 两者的差值即磁场强度起伏$ \Delta B $, 可以用来表征导引中心沿角度方向的平滑度. 物理分析和数值计算表明, 在布线结构确定的情况下, 平滑程度$ \Delta B $主要由调制深度$ I_{\rm j}/I_{\rm i} $决定, 如图3所示. 图 3 当调制频率$\omega_{\rm b}=2{\text{π}}\times10\ {{\rm{kHz}}}$, 电流位相$\phi=2{\text{π}}/3$, 电流直流成分$I_{\rm i}=1\ {\rm{A}}$时, 导引中心的角向磁场起伏$\Delta\, B$与调制深度$I_{\rm j}/I_{\rm i}$的关系. 当$I_{\rm j}/I_{\rm i}=0.1$时, 环形磁导引中心磁场强度的起伏最小: $\Delta\, B\approx0.007\ {\rm{mT}}$ Figure3. The relation of the angular magnetic field intensity $\Delta\, B$ of the guide center with the modulation depth $I_{\rm j}/I_{\rm i}$ when the modulation frequency is $\omega_{\rm b}=2{\text{π}}\times10\ {{\rm{kHz}}}$, the current phase is $\phi=2{\text{π}}/3$ and the DC part of the currents is $I_{\rm i}=1\ {\rm{A}}$. When the modulation depth is $I_{\rm j}/I_{\rm i}=0.1$, the variation of the angular magnetic field intensity is the minimum: $\Delta\, B\approx0.007\ {\rm{mT}}$.