Abstract:The effects of Re on the microstructure and mechanical properties of $ {\gamma '}$ phase Ni3Al intermetallics are investigated by using first-principles method based on density functional theory and generalized gradient approximation. It shows that in most stoichiometric ranges, the dissolution energy of Re replacing Al site is smaller than that of Re replacing Ni site. That means the energetically-favorable site of Re in Ni3Al is Al replace site. We further investigate the interaction between two Re atoms in Ni3Al. The larger the distance between two Re atoms, the more stable the system becomes, showing that Re atoms are dispersed in Ni3Al instead of being aggregated. Re doping causes a small increase in the lattice constant of Ni3Al intermetallics without causing serious lattice deformation. Analyses on differential charge density and state density show that Re atom bonds with neighboring atoms, especially with Ni atoms, and reduces the surrounding Ni—Al bond energy. Analyses on local state density show that Re atom has orbital interaction with the neighboring Ni and Al atoms, and the interaction with Ni is larger, which concerns the 5d orbit of Re and the 3d orbit of Ni. The effect of Re on the mechanical properties of Ni3Al intermetallics is also investigated. The elastic constants calculating results together with empirical criteria indicate the presence of Re atom (corresponding concentration is 0.93%) can cause increase of the stiffness and hardness of Ni3Al. The Cauchy pressure value shows a slight improvement in toughness. The increase of Re doping concentration (the concentration of Re in Ni3Al is 1.85%) can cause increase of the lattice constant, stiffness and hardness and decrease of the ductility of Ni3Al. In order to correct the temperature of the results obtained by first-principles method, the influence of temperature on the mechanical properties of Ni3Al has been further investigated through Phonopy calculation. The influence of temperature on the coefficient of thermal expansion and bulk modulus of elasticity is obtained by quasi harmonic approximation. The results show that the addition of Re slightly enhances the entropy of Ni3Al, but causes decrease of its Helmholtz free energy on a small extent. At high temperature, doping of Re greatly strengthens the bulk modulus of Ni3Al but decreases the thermal expansion coefficient of which. Results of the current research can provide theoretical data for improving the mechanical properties of single crystal turbine blades of aero-engines. Keywords:Ni3Al intermetallics/ rare metal element Re/ electronic structure/ mechanical properties
全文HTML
--> --> --> -->
3.1.Re在Ni3Al中的溶解能
为了研究Re对Ni3Al微观结构及力学性质的影响, 需确定Re在Ni3Al中的最优位置. Re和Ni的原子半径均为135 pm, Al的原子半径为125 pm, 考虑到Re的原子半径与Ni, Al原子的半径相近, 以及Ni3Al的L12面心立方结构, 因此在计算时选择Ni位、Al位和在L12结构中空间较大的八面体间隙位为Re可能的掺杂位置, 如图1所示. 图 1 L12 Ni3Al晶胞及Re可能的掺杂位置示意图 (a) Ni3Al晶胞示意图; (b) Al替代位; (c) Ni替代位; (d) 八面体间隙位置 Figure1. The crystal structure of L12 Ni3Al and different sites for Re in Ni3Al: (a) The crystal structure of Ni3Al; (b) Al substitution site; (c) Ni substitution site; (d) octahedral interstitial site.
Re原子在Ni3Al中替代Ni位、替代Al位和占据八面体间隙的情况下, Re的溶解能随Ni和Al原子化学势之差$\Delta \mu $的变化如图2所示. 图 2 Re替代Ni位、替代Al位和占据八面体间隙的情况下溶解能随Ni/Al的浓度变化图 Figure2. The variation of dissolution energy with Ni/Al concentration when Re is substituted for Ni or Al site or occupied octahedral interstice.
在晶胞结构方面, 研究了Re对Ni3Al晶格常数和化学键的影响. 当掺杂浓度为0.93%, 即1个Re原子掺杂Ni3Al超晶胞(Ni3Al-1Re), 晶格常数为3.581 ?, 与纯Ni3Al晶格常数的模拟值3.579 ?相比变化不大. 当掺杂浓度为1.85%, 即2个Re原子掺杂Ni3Al超晶胞(Ni3Al-2Re), 晶格常数为3.584 ?, 与纯Ni3Al相比仍然变化不大, 说明Re原子的掺杂对于Ni3Al没有引起严重的晶格畸变. 随着Re掺杂浓度的增加, Ni3Al的晶格常数缓慢增大. 由图3(a)和图3(b)分析可知, Re掺杂Ni3Al后, 主要与近邻的Ni原子成键. Re—Ni键键长(2.516, 2.519, 2.516 ?)小于掺杂前Al—Ni键键长(2.527, 2.527, 2.531 ?). Re掺杂前后, 掺杂点位与附近Ni原子所成化学键键角均约为$60^\circ $. 关于Re对附近Ni—Ni键和Ni—Al键的影响, 如图3(c)和图3(d)所示. 图 3 Re替代前后掺杂位置近邻的化学键 (a) Re替代前Al原子与近邻Ni所成的化学键; (b) Re替代后与近邻Ni所成的化学键; (c) Re替代前掺杂点位附近Ni—Ni键和Ni—Al键的情况; (d) Re替代后掺杂点位附近Ni—Ni键和Ni—Al键的情况 Figure3. The nearby bonds around doping position before or after Re substitutes: (a) The bonds formed between Al and neighboring Ni before Re substitutes; (b) the bonds formed between Re and neighboring Ni after Re substitutes; (c) the nearby Ni—Ni bonds and Ni—Al bonds around doping position before Re substitutes; (d) the nearby Ni—Ni bonds and Ni—Al bonds around doping position after Re substitutes.
从差分电荷密度图不能完全分析出成键情况, 因此从态密度的角度进一步分析. 纯Ni3Al体系和Ni3Al-1Re (掺杂1个Re原子)体系的总态密度如图5所示. 图 5 纯Ni3Al和Ni3Al-1Re体系的总态密度 Figure5. The total density of states of Ni3Al and Ni3Al-1Re.
关于总态密度, 费米能附近主要的峰是由Ni-Al键引起的. 通过图5发现, 在费米能附近, Ni3Al-1Re体系的峰略低于纯Ni3Al体系的峰, 说明Re的掺杂削弱了Ni-Al键, 使得Ni-Al键的键能降低, 此结论与3.2.1节中所得结论一致. 为了进一步讨论Re原子与体系中的Ni或Al原子发生的轨道相互作用, 分别计算了Re原子、与Re近邻的Ni和Al原子的局域态密度. 通过图6(a)可以分析, 在Re原子掺杂前后, Re的局域态密度的变化. Re加入后, Re原子的5d轨道相比于其他轨道变化明显, 并且5d轨道的局域态密度在约–4.5和0.75 eV处形成峰值, 说明在这两个能量附近存在较多的电子分布, Re加入后与体系中其他原子发生相互作用. 图 6 Re, 与Re近邻的Al和与Re近邻的Ni的局域态密度 (a) Re原子在纯Re和在Ni3Al-1Re中的局域态密度; (b)与Re近邻的Al在Ni3Al和Ni3Al-1Re中的局域态密度; (c)与Re近邻的Ni在Ni3Al和Ni3Al-1Re中的局域态密度 Figure6. Local density of states(LDOS) of Re, Al(next to Re) and Ni(next to Re): (a) LDOS of Re in pure Re and in Ni3Al-1Re; (b) LDOS of Al(next to Re) in Ni3Al and in Ni3Al-1Re; (c) LDOS of Ni(next to Re) in Ni3Al and in Ni3Al-1Re.
表2Ni3Al弹性常数和弹性模量的计算值与其他研究的计算值和实验值的对比以及Ni3Al-1Re, Ni3Al-2Re弹性常数等物理量的计算值 Table2.Comparison of calculated values of elastic constant and modulus of Ni3Al with other calculated, experimental values and calculated values of some physical parameters of Ni3Al-1Re and Ni3Al-2Re.
为了探究在不同温度下Re对Ni3Al力学性质的影响, 对第一性原理计算结果进行温度修正, 论文采用声子谱计算对纯Ni3Al晶胞和掺杂1个Re原子的Ni3Al晶胞的熵、自由能和定体热容进行计算. 另外, 采用了准谐波近似方法计算未掺杂晶胞和掺杂晶胞的体弹性模量B和热膨胀系数$\alpha $, 进而比较Re的掺杂对Ni3Al金属间化合物热力学性质的影响. 由图7(a)可以看出, 在温度区间为[0, 1650 K], Ni3Al-1Re的熵总是略大于未掺杂晶胞. 一般固体的熵来自晶格振动所引起的各种量子态[28], 掺杂Re后, 增加了体系内原子在原晶格上的排列方式, 进而增加了系统中振动的微观态数目. 根据(12)式, 有 图 7 Ni3Al和Ni3Al-1Re的热力学性质随温度的变化曲线 (a) Ni3Al和Ni3Al-1Re的熵随温度的变化曲线; (b) Ni3Al和Ni3Al-1Re的亥姆霍兹自由能随温度的变化曲线; (c) Ni3Al和Ni3Al-1Re的定体热容随温度的变化曲线; (d) Ni3Al和Ni3Al-1Re的体弹性模量随温度的变化曲线; (e) Ni3Al和Ni3Al-1Re的热膨胀系数随温度的变化曲线 Figure7. Thermal properties of Ni3Al and Ni3Al-1Re as a function of temperature: (a) Entropy of Ni3Al and Ni3Al-1Re as a function of temperature; (b) Helmholtz free energy of Ni3Al and Ni3Al-1Re as a function of temperature; (c) ${C_V}$ of Ni3Al and Ni3Al-1Re as a function of temperature; (d) B of Ni3Al and Ni3Al-1Re as a function of temperature; (e)$\alpha $ of Ni3Al and Ni3Al-1Re as a function of temperature.