1.School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China 2.School of Microelectronics, Xidian University, Xi’an 710071, China
Abstract:Microwave wireless power transfer(MWPT) can break through the restriction of transmission line to transmit electrical energy, which is conducive to dealing with power supply in complex scenarios, and has a very large application prospect. Energy conversion efficiency is an important parameter of MWPT. Hence, researchers are focus on improving the conversion efficiency of MWPT from different ways. Schottky diode is the core component of the rectifier circuit, which determines the limit of the energy conversion efficiency. However, the research involving the design of Schottky diode has rarely reported. In this paper, a GeOI folded space charge region Schottky diode is proposed. The space charge region of the proposed Schottky diode is composed of two parts: the vertical space charge region and the horizontal space charge region. So the capacitor is also divided into two parts, namely the vertical capacitor and the lateral capacitor. In the device model, these two capacitors are in series. So the total capacitance will be reduced. This article establishes its capacitance model and completes the optimization of device material parameters and structure parameters. The designed device parameters are as follows: the doping concentration of the heavily doped buffer layer on the left side of the Ge material is 2 × 1020 cm–3 to form Ohm contact, the doping concentration of the lightly doped region on the right side is 3.8 × 1017 cm–3, the thickness of the folded region is 0.2 μm, the Schottky metal is Wu, the width of metal is 8 μm, and the length of metal is 2 μm. We use the proposed Schottky diode as the core rectifier to simulate the rectifier circuit by using ADS, in which the SPICE parameters of the proposed Schottky diode was extract using Cadence Model Editor. When the input energy is 24.5 dBm, the energy conversion efficiency reached 75.4%. Compared with the conventional schottky diode, the energy conversion efficiency is significantly improved. The study of the proposed Schottky diodes can provide valuable reference for improving the energy conversion efficiency of microwave wireless energy transmission. Keywords:microwave wireless power transmission/ GeOI/ Schottky diode/ conversion efficiency
图11为不同外延层厚度、不同外延层浓度情况下, 部分耗尽的肖特基二极管C-V曲线图. 从图11中可以看出, 当反向电压较低时, 对于同一掺杂浓度不同外延层厚度的部分耗尽肖特基二极管, 其外延层厚度较大时, 所对应的肖特基二极管电容较大, 即对于同一大小的结电容, 外延层厚度较大的肖特基二极管需要更大的反向电压, 在穿通情况下, 外延层厚度大的肖特基二极管的纵向耗尽宽度即为其外延层厚度; 而随着反向电压的逐渐增大, 不同外延层厚度对于肖特基二极管的电容影响不大, 原因在于当肖特基二极管的组成类型均为部分耗尽时, 掺杂浓度固定的情况下, 其所对应的载流子浓度也随之固定, 因此其总电容大小对于其外延层厚度大小变化并不敏感. 图 11 不同外延层厚度、不同外延层浓度下部分耗尽肖特基二极管C-V曲线 Figure11.C-V curves of partially depleted Schottky diode with different epitaxial layer thicknesses and different doping concentrations.
图12表示的是全耗尽情况下与传统肖特基二极管电容-电压曲线图, 与传统肖特基二极管相比, 全耗尽的GeOI折叠空间电荷区类型的肖特基二极管在低电压情况下电容值要更低一点, 而在较高电压情况下两者差距没有在低电压情况下明显, 但仍可以看出传统肖特基二极管结电容始终大于新型的全耗尽GeOI折叠空间电荷区肖特基二极管结电容. 在零偏情况下, 肖特基二极管的结电容是由纵向空间电荷区电容与横向空间电荷区串联而成. 因此, 在零偏情况下全耗尽GeOI折叠空间电荷区肖特基二极管的结电容比传统结构的肖特基二极管的结电容明显降低. 图 12 全耗尽GeOI折叠空间电荷区SBD与传统结构SBD的C-V曲线 Figure12.C-V curves of fully depleted GeOI folded space charge region SBD and traditional structure SBD.
为了提升微波能量转换效率, 需要设计的肖特基二极管必须满足在零偏情况下结电容降低的目标, 选择全耗尽GeOI折叠空间电荷区肖特基二极管作为研究目标, 所设计器件参数如下: Ge材料左侧重掺杂缓冲层掺杂浓度为2 × 1020 cm–3, 其作用是为了形成欧姆接触, 右侧轻掺杂区域掺杂浓度为3.8 × 1017 cm–3, 折叠区域厚度为0.2 μm, 器件肖特基金属采用金属钨(W)材料, 横向宽度为8 μm, 电极长度为2 μm. 图13所示为所设计全耗尽GeOI折叠空间电荷区肖特基二极管的纵向电场与横向电场图. 从图13中可以看出, 当施加正向电压即肖特基二极管正向偏置下, 纵向区域电场从阳极开始在整个外延层厚度上逐渐降低, 在绝缘层处达到最小值0; 在横向区域, 0—2 μm处于纵向耗尽结束的位置, 在此处电场强度变化不大, 从2 μm处开始, 由于横向电流被限制在较窄区域, 所以横向电场强度比较大, 一直到浓度突变处, 电场强度都比较大, 在浓度突变以外, 电场强度逐渐减小至0. 图 13 全耗尽GeOI折叠空间电荷区肖特基二极管电场图 (a) 纵向电场分布; (b) 横向电场分布 Figure13. The electric field distribution of fully depleted GeOI folded space charge region Schottky diode: (a) Vertical electric field; (b) transverse electric field.
图14为所设计GeOI折叠空间电荷区肖特基二极管正向与反向I-V曲线, 可以看出, 肖特基二极管的开启电压约为0.2 V, 随着阳极电压的增大, 其正向电流逐渐增大, 最后趋于平缓. 观察反向曲线, 可以看出肖特基二极管反向击穿电压约为18 V. 图 14 全耗尽GeOI折叠空间电荷区肖特基二极管正向与反向I-V曲线 Figure14. The forward and reverse I-V curves of fully depleted GeOI folded space charge region Schottky diode.
图15为所设计全耗尽GeOI折叠空间电荷区肖特基二极管的C-V曲线. 从图15中可以看出, 在零偏电压的情况下, 已经纵向耗尽, 空间电荷区已经扩展至横向, 结电容是由纵向完全耗尽的空间电荷区电容与横向的空间电荷区电容串联而成, 因此其零偏情况下的电容值较小. 图 15 全耗尽GeOI折叠空间电荷区肖特基二极管的C-V曲线 Figure15. The C-V curve of fully depleted GeOI folded space charge region SBD.
将所设计的全耗尽GeOI折叠肖特基二极管仿真分析的正向I-V曲线, 反向I-V曲线以及在2.45 GHz频率下的C-V曲线带入Cadance Model Editor软件中提取器件的SPICE参数如表2所列[22].
参数
单位
全耗尽GeOI折叠空间电荷区肖特基二极管
$ {B}_{\mathrm{v}} $
V
18
$ {C}_{\mathrm{j}0} $
pF
0.3
$ {E}_{\mathrm{G}} $
eV
0.69
$ {I}_{\mathrm{B}\mathrm{V}} $
A
3 × 10-5
$ {I}_{\mathrm{S}} $
A
1.12 × 10-10
N
1.08
$ {R}_{\mathrm{S}} $
$\Omega $
6.0
$ {P}_{\mathrm{B}} $
V
0.2
$ {P}_{\mathrm{T}} $
2
M
0.5
表2全耗尽GeOI折叠空间电荷区肖特基二极管SPICE参数表 Table2.The SPICE parameters of C-V curve of fully depleted GeOI folded space charge region SBD.
将所设计的全耗尽GeOI折叠肖特基二极管SPICE参数带入ADS仿真软件中, 采用图5所示仿真电路, 使用阻抗自匹配模型, 得到如图16所示的仿真结果, 在输入能量为24.5 dBm时, 能量转换效率达到了75.4%. 通过HSMS-2820肖特基二极管与本文所设计的全耗尽GeOI折叠空间电荷区肖特基二极管相对比, 能量转换效率得到了6.3%的提升. 图 16 全耗尽GeOI折叠空间电荷区肖特基二极管与HSMS-2820肖特基二极管能量转换效率对比图 Figure16. Comparison of energy conversion efficiency between fully depleted GeOI folded space charge region SBD and HSMS-2820 SBD.