Abstract:The gas-lift system has a lot of significant advantages in sewage treatment, deep well oil recovery, liquid metal cooled reactor and magnetohydrodynamic power converters. The densities of different liquid media and gas media have great influences on the performance of gas lift system. Therefore, based on Fluent simulation software, using Euler model and k-ω SST (shear stress transport) turbulence model, the gas-liquid two-phase flow behaviors in nitrogen-water, nitrogen-kerosene, nitrogen-mercury and air-water, argon-water, nitrogen-water of gas lift system are studied. The rules of gas volume fraction and liquid flow rate at lifting pipe, liquid radial velocity at lifting pipe outlet, promoting efficiency are analyzed. The results are shown as follows. 1) In the nitrogen-water, nitrogen-kerosene and nitrogen-mercury system, the higher the density of liquid medium, the smaller the gas volume fraction in the lifting pipe is; the greater the flow rate of lifting liquid, the higher the promoting efficiency is. 2) In the air-water, argon-water and nitrogen-water systems, the higher the density of gas medium, the smaller the gas volume fraction in the lifting pipe is; the larger the flow rate of lifting liquid, the smaller the peak value of promoting efficiency is. 3) With the increase of gas flow rate, the liquid radial velocity at the lifting pipe outlet increases with overall fluctuation rising. Finally, the liquid velocity near the center of pipe axis is large, near the pipe wall is small. These research results provide the scientific theoretical basis for optimizing the gas lifting technology in applications such as sewage treatment, deep well oil recovery, liquid metal cooled reactor and magnetohydrodynamic power converters. Keywords:gas lift system/ numerical simulation/ density/ lifting efficiency
全文HTML
--> --> --> -->
2.1.模型建立及网格划分
根据气力提升装置原理可将其装置简化为 图1(a), 将一根竖直提升管插入蓄水池内, 由注气管线通过喷嘴注入提升管内(因注气管线尺寸太小, 忽略其影响), 不断充气, 使提升管内形成复杂的气液两相流动, 液相连续相为主相, 气相分散相为次相. 因气力提升装置一般均为圆柱形结构, 提升管外部蓄水池直径远大于提升管直径, 且蓄水池直径对气力提升系统提升性能影响不大, 只要保证计算过程中蓄水池水位保持不变, 即可将其简化为如图1(b)所示的二维轴对称结构, 图1(b)上部图形为计算模型结构图, 其下面为对其进行的网格划分图. 图中提升管管长为2 m, 管径为30 mm, 喷嘴截面面积为197.92 mm2, 浸没比为0.5. 本次网格划分采用结构化网格, 蓄水池较提升管内网格划分更为稀疏, 经网格无关性分析, 当网格总数为169600, 最小网格尺寸为0.5 mm时, 误差最小, 模拟效果最好. 本次模拟计算过程中, 选择Phase Coupled SIMPLE算法, 基于压力求解器进行求解. 初始条件下, 假设蓄水池充满液体, 由于蓄水池与提升管是联通的, 提升管内液位与蓄水池持平, 蓄水池顶部与空气接触, 液体进口边界条件为压力入口, 进气口设置为速度进口, 其值为标准大气压; 提升段出口与大气连通, 边界条件为压力出口边界, 压力值为标准大气压. 为保证计算精度, 采用高精度离散格式对各变量在时间和空间上进行离散, 体积份额及湍流强度采用QUICK离散格式, 时间项采用二阶隐式离散格式, 其余保持默认设置. 图 1 气力提升系统模型图 (a) 气力提升装置示意简图; (b) 模型及网格划分 Figure1. Model diagram of gas lift system: (a) Schematic diagram of gas lift system; (b) model and grid generation.
图 5 液体提升过程相位图 Figure5. Phase diagram of liquid lifting process.
24.3.提升液体体积流量变化趋势 -->
4.3.提升液体体积流量变化趋势
图6为提升系统稳定时, 不同液体介质和气体介质下, 液体提升流量QL随气流量QG的变化关系图. 由图6(a)可知, 氮气-水银, 氮气-水, 氮气-煤油三种不同工况下, 提升液体流量随充气量的增加先迅速升高, 当气流量为3.2653 m3/h时, 水银提升流量达到峰值, 当充气量为4 m3/h附近时, 煤油及水提升流量达到峰值, 这是因为, 随着充气量的继续增加, 提升管内混合相密度越来越小, 蓄水池与提升管间的驱动力增大, 提升液体流量就越多. 继续增大充气量, 整个提升管内气相份额变大, 液相份额变小, 提升流量小幅度缓慢下降. 同一充气量下, 水银提升流量最大, 水次之, 煤油最小, 结合图7(a)不同液体介质提升管内总压降p随充气量QG变化图, 反映出液体密度越大, 提升管进出口总压降越大, 则越易提升液体, 提升流量越大. 图 6 提升液体流量随充气量的变化 (a) 不同液体介质; (b) 不同气体介质 Figure6. Change of liquid volume flow rate with gas volume flow rate: (a) Different liquid mediums; (b) different gas mediums.
图 7 提升管总压降随充气量的变化 (a) 不同液体介质; (b) 不同气体介质 Figure7. Change of total pressure drop with gas volume flow rate in lifting pipe: (a) Different liquid mediums; (b) different gas mediums.