Abstract: We theoretically and experimentally demonstrate the anisotropic exceptional points (EPs) in the cavity magnonics system where magnons in a one millimeter-diameter yttrium iron garnet (YIG) sphere are coherently coupled with the microwave photons in a three-dimensional microwave cavity. The damping nature makes the cavity magnonics system inherently non-Hermitian. By solving the eigenvalues and eigenvectors of non-Hermitian Hamiltonian, a series of interesting and essential characteristics of the system can be obtained. Therefore, non-Hermitian physics has received more and more attention in both theory and experiment communities. Among them, exceptional points correspond to the non-Hermitian system’s degenerate states where the eigenvalues of the non-Hermitian system are identical, and the eigenvectors are parallel. The coupled cavity photon-magnon system has high tunability of coupling strength and cavity external damping rate, which is very suitable for studying EPs -related physics. Exceptional points (EPs) are crucial in all kinds of non-Hermitian physical systems, which have both fundamental and applicational importance. For instance, it can be used for sensitive detection by monitoring spectrum splitting of degenerate modes when a perturbation to be sensed occurs. The EPs can be anisotropic, which means that it has a different function relation when the system approaches the EPs along different parameter paths of the system. In this paper, by carefully designing the parameter space, we observe the anisotropic exceptional point in the coupled cavity photon-magnon system. It shows the linear and square-root behavior when the EPs are approached from different directions in the parameter space. One of the parameters is the position of the YIG sphere in the cavity, which determines the coherent coupling strength between the cavity mode and the magnon mode. Another parameter is the number of the gasket between the cavity signal loading port and the cavity external surface, which determines the external damping rate of the cavity mode. Both of these parameters can be easily and accurately adjusted experimentally. Our study paves the way for exploring anisotropic EPs based sensing technologies and more non-Hermitian related physics in the cavity magnonics system. Keywords:Coupling system/ Exceptional point/ Anisotropic/ non-Hermitian
同理, 这里也利用了在奇异点附近, $ \beta $为小量, 舍去了$ \beta^{4} $项的作用. 图1(a)表示的是在参数空间中耦合强度和腔模的衰减率随参数变化的情况, 其中红色的实线表示的是在$ \beta^2-\alpha = 0 $的情况下一系列奇异点连成的线. 从方程(5)可以知道, 当$ \alpha > 0 $, $ \beta^2 $ 从$ \beta^2 \!>\! \alpha $到$ \!\beta^2\! < \alpha $导致该混合系统从严格相在$ \beta^2 \!=\! \alpha $处经过一个奇异点而进入破缺相. 从方程(6)可以知道, 该系统在$ \beta = \pm\sqrt{\alpha} $ 时有两个具有相同手性的奇异点, 这两个奇异点具有相同的本征态 $ (i, 1)^{\rm T} $. 根据方程(5), 在$ \alpha = 0 $时改变$ \beta $ 从负值变到正值时可以得到系统本征频率虚部关于$ \beta $ 变化的线性交叉, 如图1(b)和图1(c)所示. 然而, 固定$ \beta = 0 $改变$ \alpha $的值可以得到系统本征值虚部随$ \alpha $呈平方根的变化关系, 如图1(c) 中的蓝色实线所示. 图 1 (a)归一化耦合常数$ g/g_0 $和归一化衰减系数差$ \Delta\kappa/(2 g_0) $在参数空间$ (\alpha, \beta) $ 中分别用黄色和绿色表示, 红色的实线表示的是奇异点连成的线; (b)系统本征频率在参数空间中的虚部, 黑色实线交叉的地方就是各向异性奇异点的位置; (c)表示本征频率的虚部分别沿着$ \alpha (\beta = 0) $(实线)和$ \beta(\alpha = 0) $ (虚线)方向; (d)表示的是态分别沿着$ \alpha (\beta = 0) $(实线)和$ \beta(\alpha = 0) $(虚线)方向的相位信息; 上面的参数为: $ \omega_0 = 1, \gamma_{\rm m} = 0, g_0 = 0.5 $ Figure1. (a) The normalized coupling constant $ g/g_0 $ and normalized loss difference $ \Delta\kappa/(2 g_0) $ in the parameter space $ (\alpha, \beta) $ are shown by the yellow and green surfaces, respectively. The solid red line corresponds to a line of EPs; (b) the imaginary part of the eigenfrequencies in the parameter space as a function of $ \beta $ and $ \alpha $, where the black solid line crossing is the position of the anisotropic EP; (c) imaginary part of the eigenfrequencies along $ \alpha (\beta = 0) $ adjusting direction (solid line) and $ \beta(\alpha = 0) $ adjusting direction (dotted line), respectively; (d) phase rigidity of the corresponding states along $ \alpha (\beta = 0) $ adjusting direction (solid line) and $ \beta(\alpha = 0) $ adjusting direction (dotted line), respectively. The parameters used are $ \omega_0 = 1, \gamma_{\rm m} = 0 $ and $ g_0 = 0.5 $.
4.实验结果为了实现两条趋近奇异点的路径, 我们独立地调节系统的耦合强度和腔模的耗散系数使系统可以达到并穿过奇异点. 具体地, 耦合强度的大小通过调节YIG小球在腔内的位置来改变, 腔模的耗散系数通过微波腔输入输出端口的SMA 接头天线插入腔体的深度来调节, 并且我们这两个参数在调节过程中与对应的物理量呈不同的函数关系来满足实现各向异性奇异点的要求. 微波腔的$ {\rm {TE}}_{102} $ 模式沿着腔的长边拥有两个对称的腔模磁场模式密度极大值点, 当通入微波时, 此处微波磁场强度也取得极大值. 如图3(a) 所示, 我们的实验中选取其中一个磁场强度的极大值点的坐标为中心点, 当YIG 小球放在该位置时(x = 0), 腔光子和自旋波量子的耦合强度取到最大值$ g_{0} $. 为了得到YIG 小球在腔的不同位置耦合强度$ g $ 的大小, 可以利用输入-输出理论得到的传输系数拟合实验数据得到, 传输系数的表达式如下所示(推导见附录A): 图 3 (a) 系统的耦合强度g和YIG小球在腔中位置x的二次函数关系, 三角形代表实验得到的结果. 黑色实抛物线线是理论拟合实验数据的结果. 其中深红、黄色和绿色分别表示耦合强度为 8.17, 5.54, 3.47 MHz; (b) 3D腔的衰减$ \kappa $和垫片数量y呈线性函数关系, 品红色原点代表实验测量的结果. 蓝色实线代表理论拟合的结果 Figure3. (a) The coherent coupling strength as a function of the position of the YIG sphere in the cavity, and the triangle dots the experimental results. The black solid curve is the result of theoretical fitting of experimental data. Among them, crimson, yellow and green dots indicate the coupling strengthes equal to: 8.17, 5.54 and 3.47 MHz, respectively; (b) the damping rate $ \kappa $ of the 3D cavity as a function of the number of gaskets y between the cavity and SMA connector, and the magenta dots represent the measured results. The solid blue line is the theoretical fitting curve.
通过调节YIG小球在腔里的位置x从–10变到10 mm, 可以得到耦合强度$ g $是关于位置x的二次函数. 因此, 可以实现耦合强度和可调参数的二次函数关系$ g = g_{\rm{0}}(1-\beta^2) $. 这里的可调参数也即小球的位置函数, 为了拟合实验数据, 耦合强度$ g $关于位置x的关系写成$ g = g_{\rm{0}}(1-ax^2) $, 这里$ g_0/2{\text{π}} $ = 8.45 MHz,$ a $ = 0.0072, 如图3(a) 的实线所示, 小球的位置参数和耦合强度较为符合二次关系. 为了实现$ \Delta\kappa $与外部可调参数$ \alpha $的线性关系$ \Delta\kappa/2 = g_{\rm{0}}(1-\alpha) $, 我们通过增加输入输出端口下方的垫片来减小SMA 铜针天线插入腔体内的深度, 每个紫铜垫片的厚度为0.1 mm. 首先, 选取一定长度的铜针插入到腔体内, 得到此时腔模的衰减$ \kappa/2{\text{π}} $ = 26.49 MHz. 通过在两个端口下面轮流增加垫片的数量y并测量腔模的传输谱拟合得到一系列腔体的线宽数据点, 我们可以用一个线性方程$ \Delta\kappa = 25.96-b{y} $ 拟合实验结果, 如图3(b)所示, 拟合结果为$ b $ = 1.07 是一个线性系数, 明显地, 腔模的耗散系数随着铜针插入腔体的深度减小而线性减小. 在后续展示各向异性奇异点的实验中, 我们可以固定耦合强度为$ g_{\rm{0}} $而线性地改变腔模的耗散系数使系统穿过EP. 为了得到腔的固有衰减, 我们增加垫片到一定数量直至腔模的衰减不再减小, 此时腔模的耗散系数便是腔本身的固有耗散, 具体方法可以参考文献[48]. 在该耦合系统中, 我们通过改变端口下方铜针插入腔体的深度和移动YIG小球在腔内的位置来研究奇异点的各向异性行为. 我们利用网络分析仪(vector network analyzer, VNA)得到腔的传输谱从而读取耦合系统的线宽信息, 对应着本征值的虚部. 首先, 在端口下加入合适数量的垫片使腔模的总衰减$ \kappa/2{\text{π}} $ = 15.46 MHz, 此时$ \Delta\kappa/(2\times 2{\text{π}}) $ = 6.30 MHz, 接着逐渐移动小球增加系统的耦合强度, 耦合强度的改变如图2(b)所示. 选取其中耦合强度分别为8.17, 5.54, 3.47 MHz的三条传输谱(如图4(a) 中的深红、黄色和绿色所示). 由于$ \kappa > g > \gamma_{\rm{m}} $ 导致腔自旋波量子混合系统进入磁诱导透明区域[7](magnetically induced transparency, MIT), 在传输谱中有一个透明窗口, 在腔模的衰减固定情况下随着耦合强度的的增加使系统趋近奇异点. 接下来, 继续增加腔模的耗散系数$ \kappa/2{\text{π}} $ 为18.19 MHz ($ \Delta\kappa/(2 \!\times\! 2{\text{π}})= 7.67\;{\rm MHz} )$和21.32 MHz ($ \Delta\kappa/(2\times $$2{\text{π}}) $ = 9.23 MHz) 并重复以上改变系统耦合强度的步骤得到的实验结果如图4(b)和4(c) 所示. 随着腔模耗散系数的增加, $ \Delta\kappa/(2\times 2{\text{π}}) $也逐渐增加且数值大小处于耦合强度数值可调节范围内, 因此在连续调节耦合强度的过程中导致系统可以穿过奇异点在严格相和破缺相间转变. 图 4 在腔的三种不同损耗下测得的传输谱. 所有实线表示应用图3中得到的系统的耦合强度和腔模的衰减系数实验值代入到输入- 输出理论中得到的, 腔模的衰减系数分别为15.64, 18.19和21.32 MHz Figure4. (a)Transmission spectra measured under three different damping rates of the cavity. All the solid lines are calculated using the input-output theory. The damping rates of the cavity mode are 15.64, 18.19 and 21.32 MHz, respectively.
在图4(a)—图4(c)中, 实线是利用输入-输出理论得到的传输系数$ S_{21} $画出的理论曲线. 利用上面拟合得到的调节参数(小球位置x, 垫片数量y)与耦合强度和腔的线宽的关系式以及方程(2)可以得到系统本征频率虚部的信息如图5(a)中的实线所示. 实验得到的传输谱如图4(a)—图4(c), 利用传输系数$ S_{21} $也可以得到参数空间(x, y)中系统本征值的虚部信息, 如图5(a)中的圆点所示. 以上可以看到实验数据和理论曲线符合得很好. 图 5 (a) 在不同腔模损耗下本征频率虚部关于YIG小球在腔中位置x的函数关系. 实线是利用前面实验得到的耦合强度和腔模的损耗(参见图3)计算得到的, 圆点是实验测得的数据; (b)本征频率虚部在垫片数量分别为6, 4, 2的时候并分别用点划线、靛青和蓝色实线表示, 点划线显示了线性交叉行为; (c) 当系统耦合强度$ g_0/2{\text{π}}$ = 8.45 MHz 时, 本征频率虚部关于腔的端口处垫片数量y(腔模损耗)的关系. 实线是理论计算的结果, 品红色方块是实验结果 Figure5. (a) Imaginary part of the eigenfrequencies as a function of the position x of the YIG sphere in the cavity with different number of gaskets. The solid curves are calculated using the coupling strengthes and the damping rates of the cavity modes obtained from the previous experiments (see Fig. 3), and the dots are obtained from the experimental data shown in Fig. 4; (b) imaginary part of the eigenfrequencies is plotted by black dotted line, indigo line and blue line when the number of gaskets are 6, 4 and 2, respectively. The black dotted line shows the linear crossing behavior; (c) when the coupling strength of the system is $ g_0/2{\text{π}}$ = 8.45 MHz, imaginary part of the eigenfrequencies are plotted as function of the gaskets y. The solid line is the result of theoretical calculation and the magenta square dots are the experimental results.