Abstract:Based on the (3+1)-dimensional free-space Schr?dinger equation, the analytical solutions to the equation for the propagating properties of two three-dimensional collinear self-decelerating Airy-elegant-Laguerre-Gaussian(AELG) light beams in free space are investigated. The different mode numbers, the mode index for each of the collinear beams, weight factor of combined beam, and initial phase difference will affect the profiles of the wave packets, and thus giving the method to control the spatiotemporal profiles during propagation. The spatiotemporal profiles will rotate if none of the mode parameters are equal to zero, and there are vortices in the center of the phase distribution curve. If the mode parameters are positive numbers, the profiles of the beams will rotate in a helical clockwise direction. Otherwise, if the mode parameters are negative numbers,they will rotate in a helical anticlockwise direction during propagation. The wave packets will also rotate when the relative phase is varied. However, the rotation principles of these two rotation characteristics are completely different. The spatiotemporal hollow self-decelerating AELG wave packets can be attained if the mode numbers of the collinear AiELG wave packets are the same. Multi-ring structure evolves into single-ring structure along radial direction with their propagation distance increasing during propagation, which makes the hollow part expand continuously. Keywords:Airy-elegant-Laguerre-Gaussian beam/ spatiotemporal self-decelerating wave packet/ collinear propagation/ hollow beam
全文HTML
--> --> -->
2.(3+1)D模型及其光束的解析解(3+1)D 共线时空自减速AELG波包在自由空间传输时遵循薛定谔方程. 对于沿$ Z $方向传输, 振幅为$ \psi $ 的光束, 满足的归一化方程形式为[2,3,6,23]
3.自由空间共线时空自减速 AELG光束的传输方程(10)表明, 共线传输的自减速AELG光束的解析解受叠加光束的模式指数$ m, n $、传播距离$ Z $、及其强度权重因子$ \theta $和初始相位差$ \delta $的影响. 图2显示了两束不同模式指数的时空自减速AELG波包共线传输时在不同传输距离上的面强度分布图, 其中各自的模式指数分别为 n1 = 2, $ n_{2} = 1,\; m_{1} = -1 $. 图中的$ x, y $对应位置坐标, $ T $为时间坐标. 图2 的第一行对应于 $ m_{2} = 1 $, 第二行对应于 $ m_{2} = 3 $. 显然, 自由空间两束共线传输的时空自减速 AELG 光束, 在传输过程中光束结构会发生复杂的变化, 当模式指数$ m_{2} $ 增加时, 叠加光束的角向节点数会相应增加. 另外, 共线传输光束的截面会随着传输距离的增加呈现展宽的趋势. 图 2 两束时空自减速AELG光束共线传输时随传输距离的面强度演化图 (a1), (b1) 传输距离$ Z = 0 $; (a2), (b2) 传输距离$ Z = 0.5 $; (a3), (b3) 传输距离$ Z =1 $. 双光束的模式指数分别为 (a1)—(a3) $ m_{2} =1 $, (b1)—(b3) $ m_{2}=3 $. 其他参数值分别为 $ n_{1}=2, \;n_{2}=1,\; m_{1}=-1,\; \sigma=0, \;\theta= {\text{π}}/4 $ Figure2. Iso-surface intensity plots of self-decelerating collinear AELG wave packets at (a1), (b1)$ Z = 0 $, (a2), (b2)$ Z = 0.5 $, (a3), (b3) $ Z =1 $. (a1)?(a3)$ m_{2} =1 $, (b1)?(b3)$ m_{2}=3 $. Other parameters are chosen as $ n_{1}=2,\; n_{2}=1,\; m_{1}=-1, \;\sigma=0,\; \theta= {\text{π}}/4 $
为了进一步探讨模式指数对传输光束的影响, 对于不同的模式指数的两束光束, 我们绘制了其共线传输时在不同传输截面上的光强和相位分布图. 图3第一行和第三行分别对应模式指数为n1 = 2, n2 = 1, m1 = –1, m2 = 1; n1 = 2, n2 = 1, m1 = –1, m2 = 3 的强度分布, 第二和第四行对应其相位分布. 图3的最后一列对应传输距离为 $ Z = 1.5 $, 其他的参数值和 图2相同. 由截面强度分布图可以很明显看到对于不同的模式指数$ m_{2} $, 叠加光束截面的光束节点数也不同. 显而易见, 在相位图的中心都有一个涡旋[31,32]. 众所周知, 对于模式指数分别为 $ (n_{1}, m_{1}) $和$ (n_{2}, m_{2}) $ 的双光束, 若满足模式参数[33]: 图 3 两束自减速时空AELG光束共线传输时传输截面的强度和相位分布图 第一行和第二行相对应模式指数为 $ m_{2} =1 $, 第三行和第四行相对于 $ m_{2} =3 $. 第一行和第三行为强度分布图, 第二行和第四行为相位分布图, 其中第四行对应于传输距离为$ Z=1.5 $. $ T=0 $, 其他参数的选择同图2 Figure3. The intensity and phase distributions of the self-decelerating collinear AELG wave packets at the profile during propagation. the first and second rows correspond to $ m_{2} =1 $, and the third and forth rows correspond to $ m_{2} =3 $. The first and third rows show the intensity distribution, and the second and forth rows show the phase distribution. the forth column corresponds to $ Z=1.5 $. Other parameters are the same as Fig. 2 except $ T=0 $
$ A = [2(n_{1}-n_{2})+|m_{1}|-|m_{2}|]/(m_{1}-m_{2}) = {\rm {const}}, $