Fund Project:Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 2012017yjsy160)
Received Date:20 August 2019
Accepted Date:15 October 2019
Available Online:14 December 2019
Published Online:05 January 2020
Abstract:Vortex beam has potential applications in free space optical communication because of its capacity of data transmission. Therefore, it is necessary to study the propagation characteristics of vortex beams in atmospheric turbulence. When the vortex beam propagates in the atmospheric turbulence the beam drift will occur, which has a great influence on the free space optical communication. In this paper, the beam drift of vortex beams with coma and spherical aberration transmitted in atmospheric turbulence is studied by using multi-phase screen and Fourier transform method. The numerical results show that as the transmission distance increases, the effects of both coma and spherical aberration on the beam drift are enhanced. The larger the transmission zenith angle and the coma coefficients, the greater the beam drift of the vortex beam is. However, the beam drift decreases with spherical aberration coefficient increasing. When the zenith angle and the transmission distance are both unchanged, the beam drift of the both vortex beams decrease with topological charges increasing. The influence of coma aberration on beam drift is bigger than that of spherical aberration. Keywords:coma/ spherical aberration/ beam drift/ vortex
全文HTML
--> --> -->
2.理论模型激光在大气湍流中斜程传输时的示意图如图1所示, h为垂直海拔高度, z为传输距离, $\alpha $为天顶角, z和h之间的关系为$z = h \times \sec \alpha $. 带有彗差的高斯涡旋光束在$z = 0\;{\rm{m}}$处时的光场表达式为[23] 图 1 激光在大气湍流中斜程传输时的示意图 Figure1. schematic diagram of laser propagation in slant atmospheric turbulence.
图4为传输距离z = 3639 m, 拓扑荷数不同时, 无像差、带有彗差和球差系数分别为kC3 = 0.5和 kC4 = 0.5的涡旋光束在大气湍流中传输时的相位分布. 从图中可以看出, 三种光束都随着拓扑荷数的增大, 相位的跃变处, 即“每一扇页片”的分界处模糊和变形. 尤其是拓扑荷数较大时(n = 5), 相位的畸变程度更大. 分别带有彗差和球差的涡旋光束比无像差的涡旋光束相位畸变更严重. 图 4 拓扑荷数不同时, 无像差、带有彗差和带有球差的涡旋光束在大气湍流中传输时相位变化. 传输距离z = 3639 m (a1)?(a3)无像差; (b1)?(b3)带有彗差kC3 = 0.5; (c1)?(c3)带有球差kC4 = 0.5. 相位对应黑色(–π)-白色(${\text{π}}$) Figure4. The phase change of the vortex beam with no aberration, with coma and with spherical aberration propagated in atmospheric turbulence when the topological charges are different. Distance z = 3639 m: (a1)?(a3) with no aberration; (b1)?(b3) with coma kC3 = 0.5; (c1)?(c3) with spherical aberration kC4 = 0.5. Phase responding to black (–π)-white (π).
球差的大小对涡旋光束的光强分布的影响也是不同的. 图6为在天顶角$\alpha = 80^\circ $, 传输距离z = 3639 m 时, 含有球差的涡旋光束在大气湍流中传输时的一维光强分布. 可以看出, 随着球差系数的增大, 峰值光强逐渐减小, 光束扩展逐渐增大. 对比图6(a)和图6(b), 拓扑荷数越大, 光束保持涡旋特性的能力越强. 图 6 拓扑荷数 (a) $n = 1$和(b) $n = 2$时球差系数对涡旋光束光强分布的影响 Figure6. The effects of spherical aberration coefficients on the intensity distribution of Gaussian vortex beam. Topological charge (a) $n = 1$, (b) $n = 2$
图7为传输距离z = 3639 m, 拓扑荷数n = 1时, 分别带有不同彗差和球差的涡旋光束在大气湍流中传输时的相位分布. 随着彗差系数的增大, 涡旋光束的相位的跃变处变得模糊. 随着球差系数的增大, 其相位跃变处也变得模糊. 对比图4和图7, 拓扑荷数对涡旋光束相位的影响比彗差和球差更敏感. 图 7 分别带有不同彗差和球差系数的涡旋光束在湍流中传输时相位分布. 传输距离z = 3639 m, 拓扑核数n = 1 (a1)?(a3)带有彗差; (b1)?(b3)带有球差. 相位对应黑色(–π)-白色π) Figure7. Phase change of vortex beams with different coma and spherical aberration propagated through atmospheric turbulence. Distance z = 3639 m, topological charge n = 1: (a1)?(a3) with coma; (b1)?(b3) with spherical aberration. Phase responding to black (–π)-white (π).