1.College of Physics and Optoelectronic Engineeing, Shenzhen University, Shenzhen 518060, China 2.College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China 3.Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China 4.Department of Engineering, Cambridge University, Cambridge CB2 1PZ, United Kingdom
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61604098) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 63191740)
Received Date:20 August 2019
Accepted Date:19 September 2019
Available Online:27 November 2019
Published Online:01 December 2019
Abstract:The geometric structure, electronic structure, magnetic properties and absorption spectrum of graphene-like ZnO (g-ZnO) monolayer supercell with defects are systemically studied by the first-principles calculation based on density functional theory in this work. The defect supercell model includes zinc atom vacancy (VZn_g-ZnO), oxygen atom vacancy (VO_g-ZnO), nitrogen atom substituted for oxygen atom (NO_g-ZnO) and nitrogen adsorbed on the g-ZnO monolayer (N@g-ZnO). The results indicate that the geometric deformation induced by N-doping in NO_g-ZnO and N@g-ZnO structure is negligible, while that of supercell with vacancy is relatively large. The O atoms neighboring a Zn vacancy center in VZn_g-ZnO model move away from each other as a result of symmetry breaking. As a contrast, three N atoms around VO center move into VZn_g-ZnO supercell. The pristine g-ZnO is non-magnetic. But the magnetic moment of VZn_g-ZnO is 2.00 μB in total as a result of symmetry breaking. The partial magnetic moment mainly results from the p-orbitals of the three neighboring O atoms. VO_g-ZnO has no magnetic moment, but possesses the electronic structure with identical spin-up and spin-down. The total magnetic moment of the N-doped NO_g-ZnO is 1.00 μB, and the total magnetic moment of N@g-ZnO is 3.00 μB. Their local magnetic moments are mainly contributed by the p-orbitals of N atom. The density of states and the spin density are given to analyze the magnetic properties. Based on the supercell local symmetry and molecular orbital theory, the origin of magnetic moment is well explained. The magnetic VZn_g-ZnO, NO_g-ZnO and N@g-ZnO supercell are found to have a D3h, D3h and C3v local symmetry, respectively, which well explains that their total magnetic moments are 2.00 μB, 1.00 μB and 3.00 μB, respectively. The optical absorption characteristics are also discussed. An enhancement of light absorption can be observed for the defective supercells, due to the introduction of defect states into the band gap. The optical transition between gap state and valance band leads to the below band gap absorption. These results are of insightful guidance for understanding properties of graphene-like ZnO monolayer as well as g-ZnO with vacancy and N dopant, and can be theoretically adopted for investigating the nano-electronic devices and catalytic applications based on g-ZnO monolayer. Keywords:two-dimensional material/ ZnO/ defect/ molecular orbital theory/ first-principles calculation
全文HTML
--> --> --> -->
3.1.晶体结构与结合能
g-ZnO单层是二维的六方结构, 其单胞如图1所示, 其Zn原子与O原子处于同一个原子层, 有别于立体的ZnO的六方纤锌矿和立方闪锌矿构型. 经优化后的理想的g-ZnO的晶格常数a = 3.29 ?, Zn—O键的键长为1.90 ?, 与之前的实验和理论数据相吻合[4,13,14]. 经过杂化泛函计算得到的g-ZnO的能带和态密度如图1(b)所示. g-ZnO的禁带宽度为3.20 eV, 其价带顶和导带底均在Γ处, 为直接带隙半导体, 与其他理论计算值[35,36]相一致. 由图1(b)态密度图中的总态密度(total density of states, TDOS)和分波态密度(partial density of states, PDOS)曲线可知, 价带主要由Zn原子的3d轨道和O原子的2p轨道组成, 其中O-2p轨道的贡献更加大, 而导带主要在Zn的4 s轨道和O原子的2s轨道的作用下产生. 图 1 理想g-ZnO的(a)晶体结构以及(b)能带和态密度, 其中g-ZnO价带顶对齐到0 eV Figure1. (a) Atomic structures, (b) band structure and density of states (DOS) of the g-ZnO primitive unit cell. The valence band maximum of g-ZnO is referred to 0 eV.
如前所述, VZn_g-ZnO体系为5 × 5的g-ZnO超胞缺失一个Zn原子, VO_g-ZnO体系为5 × 5的g-ZnO超胞缺失一个O原子, NO_g-ZnO体系为g-ZnO超胞中的一个O原子被N取代, N@g-ZnO体系为一个N原子吸附在5 × 5的g-ZnO超胞上. 图2展示了这些超胞优化后的几何结构, 其中图2(d)—(f)为N吸附g-ZnO的三种可能构型. 如图2(a)所示, 在VZn_g-ZnO体系中, Zn空位周围的3个O原子都远离Zn空位中心, O1-O2, O1-O3, O2-O3的距离均为3.64 ?, 明显大于理想g-ZnO中O—O键的键长3.29 ?, 分别以O1, O2, O3为顶点, 与最近邻的两Zn原子的夹角均由120.00°变为133.79°. 优化后的原子坐标变化趋势与我们之前的研究结论相吻合[26-28]. 如图2(b)所示, 在VO-g_ZnO体系中, O空位周围的3个Zn原子都向O空位中心靠拢, Zn1-Zn2, Zn1-Zn3, Zn2-Zn3的距离均为2.64 ?, 明显小于g-ZnO的晶格常数a = 3.29 ?, 分别以Zn1, Zn2, Zn3为顶点, 与最近邻的两O原子的夹角均由120.00°变为104.98°. 如图2(c)所示, 在NO_g-ZnO体系中, N原子取代O原子后, N原子与最近邻的3个Zn原子的键长均为1.92 ?, 与理想的g-ZnO体系的Zn—O键的键长1.90 ? 差别可以忽略, 杂质N原子离g-ZnO平面0.07 ?, 该体系发生的形变较小. 原因可能为N与O为相邻的元素, 原子半径差异较小, 均可以产生sp2杂化. 对于NO_g-ZnO体系的结合能的计算公式为 图 2 空位及掺杂超胞体系的几何结构示意图 (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N原子吸附在六元环中心上方; (e) N原子吸附在Zn原子上方; (f) N原子吸附在O原子上方 Figure2. Atomic structures of the g-ZnO supercells: (a) Ideal g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N atom at hollow site; (e) N atom on top of Zn atom; (f) N atom on top of O atom.
利用杂化泛函计算得到的超胞体系的总态密度以及分波态密度如图3所示, 图中0 eV为g-ZnO价带顶的位置. 图 3 总态密度和分波态密度 (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N@g-ZnO; 其中g-ZnO的价带顶对齐到0 eV Figure3. Total density of states and partial density of states: (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N@g-ZnO. The valence band maximum of g-ZnO is referred to 0 eV.
理想的g-ZnO体系是无磁性的. 当引入Zn空位后, VZn_g-ZnO体系在价带以上0.72和1.21 eV分别出现两个自旋向下的杂质能级(图3(a)), 其中在价带顶0.72 eV处自旋向下的杂质能级位于费米能级以下, 氮原子与其对应的自旋向上的能级因为能级分裂的原因, 出现在价带顶附近, 由价带附近的自旋向上和自旋向下的能级不是严格对称说明了这一点. PDOS结果表明, 该杂质能级主要是由氧原子贡献, 来源于与空位Zn原子近邻的三个氧原子. 当引入O空位后, VO_g-ZnO体系没有磁性, 磁矩为零, 该体系的态密度上下自旋对称 (图3(b)), 并且态密度图中VO_g-ZnO体系的禁带中没有出现杂质能级. N掺杂体系禁带中出现明显的杂质能级, 其中N替位O体系(图3(c))的杂质能级靠近导带, 在价带顶以上2.41 eV处出现自旋向下的杂质能级, PDOS表明杂质能级主要是N原子贡献. 吸附体系即N@g-ZnO体系(图3(d))的杂质能级靠近导带, 在价带顶以上3.01 eV处出现杂质能级, 该杂质能级则是主要由吸附的N原子贡献. 后面将结合自旋密度和分子轨道理论对上述结果进行更加详细的解释. g-ZnO的Zn空位、O空位、N掺杂的能带结构如图4所示, 同本征g-ZnO一样, 四种缺陷体系均为直接带隙半导体. 其中VZn_g-ZnO的杂质能级由3条自旋向下的轨道构成, 其中在价带顶以上1.21 eV处的2条杂质能级轨道简并. NO_g-ZnO的杂质能级由1条自旋向下的轨道构成. N@g-ZnO的杂质能级由靠近导带的3条简并杂质能级轨道构成, 其中1条轨道与另外两条能量稍高且完全简并重合的轨道发生微小的分裂. 后面将结合自旋密度和分子轨道理论对上述结果进行更加详细的解释. 图 4 能带结构 (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N@g-ZnO; 其中g-ZnO的价带顶对齐到0 eV Figure4. Band structure of (a) VZn_g-ZnO; (b) VO_g-ZnO; (c) NO_g-ZnO; (d) N@g-ZnO. The valence band maximum of g-ZnO is referred to 0 eV.