1.School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China 2.Department of Electronic Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11175140), the Scientific Research Program Funded by Shanxi Province, China (Grant No. 2019JM-340), and the Scientific Research Program Funded by Xi’an University of Technology, China (Grant No. 2015CX030)
Received Date:18 July 2019
Accepted Date:17 September 2019
Available Online:26 November 2019
Published Online:05 December 2019
Abstract:The serious charging effect of polymer film with a thickness of the order of microns under the radiation of high-energy transmission electron beam, on the reliability of the micro-nano electronic device in electron microscopy detection is investigated. The charging effect of the polymer film is numerically calculated in this paper. The scattering process is simulated by the Monte Carlo method. The elastic scattering is calculated with the Rutherford scattering model. The inelastic scattering is simulated with the fast secondary electron (SE) model and the Penn model. The transport, the capture, and the recombination process of the charges are treated with the finite difference method. The fourth-order Runge-Kutta method is used to solve the trajectory of the emitted SEs. The dynamic distributions of the net charge, the built-in electric field, the surface emission current, and the transmission current are investigated, and the influence of the film thickness and the beam energy on the charging characteristics are analyzed. The results show that due to the emission of electrons near the sample surface, the distribution of the net charge in the sample is first positive and then negative along the incident direction. In addition, under the irradiation,higher charge quantity is deposited in the sample, and the net charge density increases gradually. However, with long-time irradiation, the deposited electrons transport to the surface under the action of built-in electric field which reduces the surface net charge density. Therefore the net charge density tends to a stable value. The space potential is positive in the surface and negative inside the sample. Therefore some emitted SEs return to the surface, resulting in the electron beam-induced current. With the irradiation, the positive surface potential increases and tends to a stable value. Hence the actual surface emission current decreases to a stable value and the sample current increases to a stable value. The sample current remains unchanged due to the weak charging strength. Increasing the film thickness leads the transient time to increase, which contributes to the decline of the surface potential and the increase of the actual emission currentand sample current. The increase of the beam energy causes the transmission current to increase and the sample current to decrease. In addition, it reduces the positive surface potential and the actual surface emission current accordingly. The results conduce to the decrease of the charging effect of the polymer film under the radiation of high-energy electron beam in the electron microscopy. Keywords:charging effect/ numerical simulation/ transmission current/ transport
根据(19)式, 当入射电子束能量为10 keV时, PMMA样品的电子入射深度约为2.601 μm, 大于样品厚度, 因此有透射电子电流产生. 高能电子束照射下, 样品内部电荷的分布是一个动态变化过程. 图4是不同照射时刻, 样品中心自由电子密度N0,0,z(t)和净电荷密度C0,0,z(t)沿入射方向(z方向)的分布. 这里净电荷密度是一个网格点空穴密度与电子密度之差. 首先, 由于近表面附近经非弹性散射激发的次级电子从样品出射, 因而近表面附近自由电子密度较低; 而在样品靠近基底区域(z = 2 μm), 一方面非弹性碰撞激发的次级电子数目减少, 且由于电子的输运导致该区域自由电子密度也较低. 随着电子束的照射, 这样的分布形态更加明显. 如图4(b)所示, 净电荷密度在深度小于0.1 μm区域内为正, 而在下方为负. 其原因主要是近表面二次电子的出射. 此外, 随着电子束照射, 样品内沉积更多电荷, 净电荷密度将逐渐升高. 但在长时间照射下, 沉积电子在内建电场的作用下向表面输运, 反而降低了表面净电荷密度, 因此净电荷密度将趋于一个稳定值. 图 4 样品内部入射方向电荷分布 (a) 电子密度; (b) 净电荷密度 Figure4. Charges distribution along the incident direction: (a) Electron density ; (b) net charge density.
图5是不同照射时间空间下电位V0,0,z(t)和电场强度E0,0,z(t)沿入射方向的分布. 从图5(a)可知, 在样品近表面, 空间电位为正, 然后沿入射方向下降至一个极小值, 最后逐渐上升趋近于零. 这里, 虽然整体上样品带负电, 但由于净电荷密度在近表面为正, 所以样品近表面空间电位为正. 此外, 随着电子束照射, 近表面正电位持续升高, 同时空间电位极小值也持续下降, 这主要是随着照射, 净静电荷密度持续升高所致(图4(b)). 最后, 如图4(b)所示, 空间电场的分布形态决定了样品内部电荷的输运方向. 一方面, 在样品内部1 μm上方电场强度为负, 吸引电子向表面输运, 减缓了表面正电位的升高趋势; 而在1 μm下方电场强度为正, 推动电子向基底输运, 形成电子束感生电流及样品电流. 图 5 (a) 空间电位; (b) 电场强度沿入射方向分布 Figure5. (a) Space potential and (b) electric field along the incident direction.
23.2.出射及透射电子电流 -->
3.2.出射及透射电子电流
从图4可知, 由于高能电子束可穿透聚合物薄膜, 尽管电子产额远小于1, 但其带电强度较弱. 图5所示的表面正电位还会吸引一些出射二次电子返回表面, 从而降低了实际的出射电子电流. 图6是表面电位VS和出射电子电流Iσ的时变特性模拟结果. 首先, 随着电子束照射, 表面正电位持续升高并趋于稳定值. 这是表面正空间电荷持续升高所致. 此外, 随着电子束照射, Iσ逐渐下降. 事实上, 随着表面电位的升高, 会引起更多的二次电子返回表面, 导致实际的出射电子电流降低. 图 6 表面电位VS和出射电子电流Iσ时变特性 Figure6. The surface potential VS and emission current Iσ as function of time.
图7是透射电流ITE和样品电流IS的时变特性. 从图7可以看出, 透射电流基本上保持恒定. 事实上, 对于聚合物薄膜, 由于样品表面和内部电场强度均较弱, 入射电子在散射过程中的运动方向及能量衰减受其影响较小, 因而透射电流的变化较小. 此外, 就样品电流IS而言, 一方面随着电子束照射, 电子束感生电流逐渐增大; 同时由于表面正电位的升高, 更多二次电子返回表面流经基底形成样品电流. 因此总体上样品电流增大. 图 7 透射电流ITE和样品电流IS时变特性 Figure7. The transmission current ITE and the sample current IS as function of time.