1.Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China 2.Key laboratory of Underwater Acoustics Environment, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No.11904382) and the IACAS Young Elite Researcher Project QNYC (Grant No. 201701)
Received Date:07 August 2019
Accepted Date:21 October 2019
Published Online:20 January 2020
Abstract:The reflection coefficient of the flat sea surface in the ideal condition to the incident sound wave is –1. The perfect reflection effect does not introduce reflection loss. However, the sea surface is usually rough due to the wind. The wind-generated rough sea surface has not only reflection effect, but also scattering effect on the sound wave. At the same time, the wind-generated bubbles layer also has significant effect on the sound propagation. On the one hand, the bubbles layer can change the sound speed profile and result in the refraction of the incident sound wave. On the other hand, the bubbles layer has scattering effect and absorption effect on the incident sound wave and leads to the sound wave to attenuate. In fact, the rough sea surface and the bubbles layer are two main factors affecting the sound propagation in the windy weather at sea. Many researchers have paid much attention to the effect of the wind-generated rough sea surface on the sound propagation, but few of them have considered the effect of the wind-generated bubbles layer on the sound propagation. Based on the Ramsurf sound propagation model under the rough sea surface, the effects of wind-generated bubbles layer underneath rough sea surface on reflection loss and sound propagation with different wind speeds are analyzed. Based on the Hall-Novarini bubbles population model, the sound speed profile in the bubbles layer is modified and the attenuation coefficient due to scattering and absorption of the bubbles layer is calculated. The simulation results shows that when the wind speed is 10 m/s, the effect of the bubbles layer is significant on reflection loss with the frequencies higher than 2 kHz. In the given underwater acoustic environment, for a frequency of 3 kHz, when the source depth and the receiver depth are both 7 m, the enhancement of the transmission loss due to the bubbles layer is 2.6 dB for a wind speed of 13 m/s, and the enhancement is 8.1 dB for a wind speed of 16 m/s. And when the source depth and the receiver depth are both 18 m, the enhancement of the transmission loss due to the bubbles layer is 2.5 dB for a wind speed of 13 m/s and the enhancement is 4 dB for a wind speed of 16 m/s. Keywords:rough sea surface/ bubbles layer/ sound propagation
其中${\phi _j} \equiv {k_j}{h_j}\sin {\theta _j}$是声场穿过厚度为${h_m}$的薄层的路径产生的与角度有关的垂直相移. 其中${k_j}$是第j层的波数, ${h_j}$是第j层的厚度, ${\theta _j}$是第j层的入射波的掠射角. 考虑小掠射角入射的声波, 水中声速为1490 m/s等声速剖面, 分别在风速为7, 10和13 m/s下计算海面反射损失(分别对应图5, 图6和图7), 以$ - \ln \left| {{V_{\rm{c}}}} \right|$计算海面反射损失(单位为奈培). 图 5 风速为7 m/s时起伏海面下气泡层对海面反射损失的影响 (a) 无气泡层; (b) 考虑气泡层对声波的消减效应; (c) 考虑气泡层对声波的折射效应; (d) 同时考虑气泡层对声波的折射效应和消减效应 Figure5. Effects of the bubbles layer underneath the rough sea surface on reflection loss in nepers with a wind speed of 7 m/s: (a) Rough sea surface; (b) rough sea surface + scattering and absorption effect of the bubbles layer; (c) rough sea surface + refraction effect of the bubbles layer; (d) rough sea surface + scattering and absorption effect of the bubbles layer + refraction effect of the bubbles layer.
图 6 风速为10 m/s时起伏海面以及气泡层对海面反射损失的影响 (a) 无气泡层; (b) 考虑气泡层对声波的消减效应; (c) 考虑气泡层对声波的折射效应; (d) 同时考虑气泡层对声波的折射效应和消减效应 Figure6. Effects of the bubbles layer underneath the rough sea surface on reflection loss in nepers with a wind speed of 10 m/s: (a) Rough sea surface; (b) rough sea surface + scattering and absorption effect of the bubbles layer; (c) rough sea surface + refraction effect of the bubbles layer; (d) rough sea surface + scattering and absorption effect of the bubbles layer + refraction effect of the bubbles layer.
图 7 风速为13 m/s时起伏海面以及气泡层对海面反射损失的影响 (a) 无气泡层; (b) 考虑气泡层对声波的消减效应; (c) 考虑气泡层对声波的折射效应; (d) 同时考虑气泡层对声波的折射效应和消减效应 Figure7. Effects of the bubbles layer underneath the rough sea surface on reflection loss in nepers with a wind speed of 13 m/s: (a) Rough sea surface; (b) rough sea surface + scattering and absorption effect of the bubbles layer; (c) rough sea surface + refraction effect of the bubbles layer; (d) rough sea surface + scattering and absorption effect of the bubbles layer + refraction effect of the bubbles layer.
图5(a)是不考虑气泡层影响时起伏海面的海面反射损失计算, 图 5(b)在图5(a)的基础上加入了气泡层对声波的消减效应, 不同风速下气泡层引起的声波衰减系数如图3所示; 图5(c)在图5(a)的基础上加入了气泡层对声波的折射效应, 不同风速下气泡层引起的声速剖面的变化如图2所示, 将海表以下0—10 m的水体分为100层, 利用上述递归方法逐层计算, 最顶层的反射系数利用(17)式求得; 图5(d)是在图5(a)的基础上同时考虑了气泡层对声波的折射效应和消减效应. 后续图6和图7的子图考虑的因素排序与图5一致. 观察图5, 在风速为7 m/s时, 起伏海面的粗糙度较小, 此时由于风浪搅拌引起的气泡层对声速剖面结构的改变以及对声波的散射作用都较小, 因此, 海面反射损失相对较小; 图5(c)与图5(a)相比, 气泡层的折射效应对于3 kHz以上的海面反射损失影响较为明显. 观察图6, 图6(c)与图6(a)相比, 在频率大于2 kHz时, 起伏海面下气泡层因素很大程度地改变了海面反射损失; 图6(c)与图6(d)相差较小, 此时, 相对于气泡层对声波的散射和吸收效应, 气泡层对声波的折射效应起主要作用. 可见, 风速大于10 m/s时, 在频率大于2 kHz时, 海面粗糙度和气泡层对小掠射角下声传播的影响不可忽视. 观察图7, 相对于图5和图6, 由于风速的增加, 图7中起伏海面下的海面反射损失以及气泡层对海面反射损失的影响都较大, 并且在风速为13 m/s时, 气泡混合层对1 kHz以上小掠射角下的海面反射损失的影响已经较为明显. 3.气泡层对声传播损失的影响本文提出的起伏海面下含有气泡层时的声传播计算方法的总体思路是: 以起伏海面下的Ramsurf声传播模型为模型基础, 利用Monte-Carlo方法[24]产生一维PM谱起伏海面作为海面边界的输入参数; 在考虑气泡层的影响时, 将不含气泡的水中声速剖面用(20)式进行修正得到含有气泡层的水中声速剖面(如图2所示), 作为模型中的声速剖面参数; 同时利用(21)式计算气泡层引起的声波衰减系数(如图3所示)作为模型的水中衰减参数. 水声环境为80 m水深, 声源深度SD为7 m, 接收深度RD为7 m; 不含气泡的水中声速为1490 m/s等声速, 考虑气泡层影响时用(20)式进行修正. 分别在风速为7, 10, 13和16 m/s下计算起伏海面下不考虑气泡层和起伏海面下考虑气泡层时的传播损失曲线. 用宽带非相干方法以1/3倍频程的带宽计算中心频率为3 kHz的传播损失曲线(频率间隔取10 Hz), 每个频率采用40次Monte-Carlo方法的平均, 以下图8(a)—图8(d)分别是风速为7, 10, 13和16 m/s时的声传播损失曲线, 其中红色曲线是平整海面下计算所得, 绿色曲线是起伏海面下不考虑气泡混合层因素计算所得, 蓝色曲线是起伏海面下考虑气泡层因素计算所得. 图 8 不同风速时平整海面、起伏海面不考虑气泡层因素和起伏海面考虑气泡层因素时的传播损失曲线比较(SD = 7 m, RD = 7 m) (a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s; (d) v = 16 m/s Figure8. Comparison of the transmission loss curves with different wind speeds (SD = 7 m, RD = 7 m): (a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s; (d) v = 16 m/s.
观察图8(a), 风速为7 m/s时, 在距离为10 km处, 红色曲线和绿色曲线相差5 dB, 而绿色曲线和蓝色曲线几乎重合, 这是由于气泡层引起的衰减系数以及声速剖面的结构上的改变都较小, 因此, 气泡层对声传播损失的影响较小. 观察图8(b), 风速为10 m/s时, 在距离为10 km处, 红色曲线和绿色曲线相差4.5 dB, 绿色曲线和蓝色曲线相差0.4 dB. 观察图8(c), 风速为13 m/s时, 在距离为10 km处, 红色曲线和绿色曲线相差6.7 dB, 绿色曲线和蓝色曲线相差2.6 dB. 观察图8(d), 风速为16 m/s时, 在距离为10 km处, 红色曲线和绿色曲线相差11.2 dB, 绿色曲线和蓝色曲线相差8.1 dB. 可见, 风速越大, 起伏海面和气泡层对声传播的影响越大. 保持其他条件不变, 将声源深度SD和接收深度RD均设为18 m, 利用同样的方法分别在风速为7, 10, 13和16 m/s下计算起伏海面下不考虑气泡层和起伏海面下考虑气泡层时的传播损失曲线, 以下图9(a)—图9(d)分别是风速为7, 10, 13和16 m/s时的声传播损失曲线. 图 9 不同风速时平整海面、起伏海面不考虑气泡层因素和起伏海面考虑气泡层因素时的传播损失曲线比较(SD = 18 m, RD = 18 m) (a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s; (d) v = 16 m/s Figure9. Comparison of the transmission loss curves with different wind speeds (SD = 18 m, RD = 18 m.): (a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s; (d) v = 16 m/s.