Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Heilongjiang Provincial Key Laboratory of Dielectric Engineering, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
Abstract:By means of first-principles electronic structure calculations, the ordered graphene nanomeshes with patterned hexagonal vacancy holes are theoretically studied to explore the modification mechanism of electrical conduction on graphene atomic monolayers. According to pseudopotential plane wave first-principles scheme based on density functional theory, the band structures of graphene nanomeshes are calculated to analyze the electrical conductance in correlation with the superlattice symmetry and vacancy hole magnetism. Based on the structural features and topological magnetism of Y-shaped nodes between the nanopores on the atomic monolayer of graphene, the graphene nanomeshes are classified into three types. The quadruplet degeneracy and splitting of electronic states at Brillouin zone center are investigated by comparing the band structures of graphene nanomeshes and analogical superlattices. The effects of inversion symmetry and supercell size on the opening band-gap at Dirac cone are elaborately analyzed with the consideration of antiferromagnetic coupling and hydrogen passivation at the magnetic edge of nanopores on graphene nanomeshes. The band-structure calculation results indicate that the (3m, 3n) (m and n are integers) superlattices have fourfold degenerate electronic states at center point of Brillouin zone, which can be effectively splitted by regularly arranging porous atomic vacancy to make the (3m, 3n) nanomesh, resulting in adjustable band-gap no matter whether or not the sublattices keeping in equivalence. In the nanomeshes formed by patterned holes with magnetic edge, the antiferromagnetic coupling adds a quantum parameter to the inversion symmetry so as to break the sublattice equivalence, opening band-gap at the twofold degenerate K point. Nevertheless, the hydrogen passivation at the edge of magnetic nanopores will convert the magnetic graphene nanomeshes into non-magnetic and eliminate the band-gap at K point. The band-gap of graphene nanomeshes could also be controlled by changing the density of nanopores, suggesting a graphene nanomaterial with adjustable band-gap that can be designed by controlling the mesh pore spacing. The graphene nanomeshes represent a new mechanism of forming band-gap and thus promise a strategy for achieving special electrical properties of graphene nanostructures. These results also theoretically demonstrate that the nano-graphene is a prospective candidate with flexibly adjustable electrical properties for realizing multivariate applications in new-generation nano-electronics. Keywords:graphene nanomesh/ electronic structure/ first-principles calculation/ conduction property
全文HTML
--> --> --> -->
3.1.石墨烯纳米网孔形状及磁耦合
在石墨烯碳原子平面上构建规则排列的六角形纳米孔洞形成的石墨烯纳米网结构如图1(a)所示, 由晶格矢量A和B表示的周期性重复单元为石墨烯纳米网的六角形超胞, 每个超胞包含一个六角网孔. 石墨烯纳米网还可以被看作由Y形结点连接的网络结构. 根据Y形连接结点的原子排列结构和磁矩分布将石墨烯纳米网分为三类, 如图1(b)所示, 分别用G60, G42, G84表示(石墨烯平面去除包含n个碳原子的D6h六角对称石墨烯纳米片段后构建石墨烯纳米网Gn), 其中G60不具有磁性, 而G42和G84分别产生相邻原子反铁磁耦合和相邻磁性团簇反铁磁耦合. 因此本文将此三种石墨烯纳米网的周期性有序排列网孔分别简称为非磁(non-magnetic, NM)、磁性原子(magnetic atom, MA)和磁性团簇(magnetic clusters, MC)网孔. MC石墨烯纳米网孔洞边缘上有3个相连的碳原子通过铁磁耦合形成磁性团簇, 而MA与MC网孔不同, 其磁矩局域分布在单个碳原子上. 图 1 (a) 网孔周期性有序排列的石墨烯纳米网示意图; (b) 不同磁分布的三种类型石墨烯纳米网的空孔超晶格胞结构(左)和Y形结点连接部分(右), 黑色小球表示G42 (MA) 和G84 (MC) 网孔边缘上具有净自旋磁矩分布的碳原子 Figure1. (a) Schematic structure of graphene nanomesh with periodically patterned holes; (b) the supperlattice cells (left) and Y-junction connection areas (right) for three types of vacant holes with different magnetic distributions, black beads represent carbon atoms distributed with net spin moment at the edge of G42 (MA) and G84 (MC) holes in graphene nanomeshes.
为了研究网孔周期性排列的石墨烯纳米网的电子特性, 首先以G60为例通过第一原理计算对NM石墨烯纳米网的电子结构进行分析. 为了简化描述, 本文用(M, N)来表示晶格矢量A = Ma, B = Nb (a和b分别表示石墨烯原胞的两个晶格矢量)的石墨烯纳米网超晶格. G60 (N, N)石墨烯纳米网(N = 10—20)的电子结构计算结果如图2(a)所示, 网孔中缺失碳原子使费米能级降低到了石墨烯K位置狄拉克点以下0.4—0.7 eV处, 当N = 3n (n为整数)时, 能带结构形成带隙. 在石墨烯的能带工程应用中, 一般采用打破石墨烯子晶格的对等性来产生和调节能带带隙, 而石墨烯纳米网的子晶格仍然保持对等, 虽然N ≠ 3n的石墨烯纳米网能带结构中没有开口带隙, 但N = 3n的石墨烯纳米网却形成了能带带隙, 因此石墨烯纳米网的能带带隙产生机理与通过打破晶格反演对称性来产生能带带隙的机理不同. 为了研究石墨烯纳米网能带带隙的产生原因, 对相同胞尺寸的纯石墨烯超晶格进行同样的计算并比较能带结构, 结果发现(3m,3n) (m, n为整数)的石墨烯超晶格能带结构在布里渊区中心Γ点的费米能级处产生四重简并(图3). 石 墨烯中空位原子或原子团如石墨烯纳米网的网孔使Γ点的四重简并态发生分裂, 从而形成开口带隙. 图 2 G60石墨烯纳米网的电子结构计算结果 (a)超晶格(N, N)胞尺寸N = 10 – 15的G60纳米网能带结构; (b) N = 12的G60纳米网在布里渊区K点σ*态的电子密度空间分布(电子态能量~0.2 eV); (c) N = 12网孔边缘碳原子的投影能态密度. 费米能级为参考能量零点(竖直虚线) Figure2. Calculated electronic structures of G60 patterned graphene nanomeshes: (a) Energy band structures of the G60 nanomeshes with supplattice cell (N, N) (N = 10 – 15); (b) the electron density distribution of the σ* state at K point in the energy ~0.2 eV for N = 12; (c) the projected density of states on the carbon atoms of hole edge for N = 12. The reference energy zero is set as Fermi energy level indicated with horizontal dot line.
图 3 石墨烯超晶格的能带结构, 超胞尺寸从(1, 1)至(7, 7), 以费米能级(垂直虚线)作为能量参考零点 Figure3. The energy band structures of pristine graphene supperlattices with lattice vector extending from (1, 1) to (7, 7). Fermi energy level is referenced as energy zero indicated by horizontal dot line.
在计算的石墨烯纳米网的能带结构中都有一条几乎平行的能量色散曲线, 在图2(a)中标识为σ*态. 为了分析其属性, 在图2(b)中绘制出了G60(12, 12)纳米网的σ*态电子密度在空间的分布, 其能级为0.2—0.4 eV(以费米能级作为能量参考零点). 电子密度的空间分布表明此σ*态是网孔边缘碳-碳σ键的反键态. G60(12, 12)纳米网的网孔边缘碳原子投影能态密度计算结果如图2(c)所示, 证明σ*能带来源于网孔边缘碳原子. 石墨烯纳米网能带带隙的形成也与网孔边缘的局域应变有关, 因此需要分析网孔边缘碳-碳原子距离随纳米网超晶格胞尺寸大小的变化(图4). 石墨烯纳米网超晶格胞尺寸越大, 网孔边缘碳-碳原子间距越大, 因而来源于边缘碳-碳原子的反键态σ*能级越低; 并且当G60的超胞尺寸N = 3n (n为整数)时, 形成开口带隙, 导致σ*能级突然升高(如图4(b)所示). 图 4 G60 (N, N)石墨烯纳米网的网孔边缘碳-碳原子间距d (a)以及σ*态的K点能级(b)随超晶格胞尺寸N的变化, 费米能级作为参考能量零点 Figure4. Carbon-carbon atomic distance d at hole edge (a) and energy level of the σ* state at K point (b) as a function of supperlattice cell size N for the G60 (N, N) graphene nanomeshes, with Fermi energy level referenced as energy zero.
23.3.磁性石墨烯纳米网 -->
3.3.磁性石墨烯纳米网
由于磁性石墨烯纳米网含有反铁磁耦合的MA或MC网孔, 对体系的整体对称性增加了一项量子条件, 也就是说, 除了原子排列对称性还要包括电子自旋形成磁有序相的对称性. 此外磁耦合也导致石墨烯纳米网的网孔边缘碳原子产生轻微的变化, 因此磁性石墨烯纳米网失去了反演对称性. 含有反铁磁耦合的MA和MC网孔的石墨烯纳米网的能带结构计算结果如图5所示, 反铁磁耦合破坏了石墨烯纳米网的反演对称性, 导致能带结构产生带隙. 为了探究磁相互作用是否也会导致能带带隙的形成, 对相应的石墨烯纳米网铁磁耦合态进行了电子结构的计算, 结果表明: (10, 10)和(11, 11)胞尺寸的石墨烯纳米网铁磁耦合态没有形成能带带隙, 因为铁磁耦合仍然使体系保持反演对称性; 而铁磁耦合态(12, 12)石墨烯纳米网的能带结构中产生了带隙, 这是由于简并微扰使四重简并态发生分裂所导致, 如图5上图所示. 铁磁耦合态(10, 10)和(11, 11)石墨烯纳米网不存在能带带隙, 证明磁相互作用不会使能带结构产生带隙. 当网孔边缘碳原子被氢钝化以后, MA和MC石墨烯纳米网转变为非磁性体, 其能带结构的计算结果如图5中下图所示: 反演对称性仍然使(10, 10)和(11, 11)石墨烯纳米网保持无带隙的金属能带结构特征, 而(12, 12)石墨烯纳米网因简并微扰在布里渊区中心Γ点产生能带带隙. 图 5 (a) MA (G42)和(b) MC (G84)型网孔石墨烯纳米网的能带结构, 上下两行能带结构图分别对应网孔边缘碳原子无氢钝化和氢钝化的石墨烯纳米网 Figure5. Energy band structures of the graphene nanomeshes with (a) MA (G42) and (b) MC (G84) patterned holes, respectively. The up and down panels represent nanomeshes without and with hydrogen passivation at hole edge, respectively.
类似于非磁性石墨烯纳米网, MA和MC磁性石墨烯纳米网的能带结构中也出现了能量几乎不随波矢发生色散的σ*能级(平行能带), 但是该平行能带却由于有序的磁相互作用而出现明显的能量色散(形成较窄的导带边能带)和分裂. 如图6(a)中所示的G42石墨烯纳米网能带结构, 分裂的σ*能带分别由σ1*, σ2*, σ3*和σ4*标识. 尽管网孔结构参数dp几乎保持相同(7.18—7.23 ?), 但是(10, 10), (11, 11)和(12, 12)石墨烯纳米网的Y形交叉结点上的磁性原子(团簇)的距离dj差别很大, 分别为12.17, 14.64和17.28 ?. 网孔间隔越大(即Y形交叉结点尺寸dj越大), 各个磁性原子(团簇)在网孔交叉结点上的磁相互作用强度越小, 因而σ*能带色散有所减弱并且能带σ1*与σ2*以及σ3*与σ4*之间的分裂越小; 同时σ1*-σ2*和σ3*-σ4*两组能带之间的分裂以及能量色散程度还依赖于dp大小, 对于相同dp的石墨烯纳米网, 两组σ*能带之间的分裂带隙相同(包括非磁性石墨烯纳米网, 如图4下图对于G60的计算结果所示). G84磁性石墨烯纳米网(dp为9.9 ?)能带结构的计算结果表明: σ1*-σ2*和σ3*-σ4*两组能带之间的分裂及其能量色散随dp显著减小, 对于G84几乎可以忽略不计; 当超胞尺寸超过(12, 12)以后, σ*能级不发生能量色散且σ1*与σ2*以及σ3*与σ4*能级简并. 图 6 (a) NM 网孔G60, (b) MA网孔G42和(c) MC网孔G84石墨烯纳米网的能带带隙随超晶格胞尺寸(N, N)的变化 Figure6. Bandgap width varying with cell size (N, N) of (a) G60, (b) G42 and (c) G84 graphene nanomeshes with NM, MC and MA vacancy holes respectively.