Abstract:With energy-saving and emission-reduction have become the theme of today's social development, the theoretical design and research of novel transparent heat insulation materials for windows, which can save energy and improve the comprehensive utilization efficiency of solar energy, are particularly crucial.In this paper, a calculation method based on DFT(density functional theory) is used to study the lattice parameters (the geometric structure of h-WO3 crystal was optimized by calculation) electronic band structure, formation energy, and optical properties of pure hexagonal phase tungsten trioxide(h-WO3) before and after doping with Tl. The calculated results indicate that the lattice volume increases and the total system energy decreases to a negative value after Tl-doped h-WO3, while the system has better stability; The electron band structure changes greatly after doping, but the material still maintains n-type conductivity. In the meantime, the optical properties of the material also changed, h-WO3 had no near-infrared absorption performance before Tl-doping, and Tl0.33WO3 after Tl-doped had strong near-infrared absorption performance. On this basis, the solar radiation shielding performance of h-WO3 before and after Tl doping has been studied. The results show that pure h-WO3 has no solar radiation shielding performance, while Tl0.33WO3 thin films after Tl-doped h-WO3 have high transparency in visible light region and strong absorption in near infrared radiation. The calculation results provide a theoretical basis for the application of transparent thermal insulating material for windows of Tl-doped h-WO3. Keywords:first-principles/ Tl-doped/ h-WO3/ optical properties
全文HTML
--> --> --> -->
2.1.晶体结构
六方相三氧化钨(h-WO3)属于六方晶系, 空间群为P6/mmm (No. 191), 具有WO6氧八面体六元环和三元环的ab平面内的沿c轴堆积, 形成平行c轴的六边形和三边形的准一维孔道[21]. 六方相三氧化钨中W原子位于(0.5, 0, 0), O原子位于(0.5, 0, 0.5)和(0.212, 0.424, 0). Tl离子嵌入在WO6八面体六元环内, 位置为(0, 0, 0)[22] (如图1所示). 图 1 Tl掺杂h-WO3的2 × 2 × 1超晶胞俯视图 Figure1. Top view of the 2 × 2 × 1 supercell of Tl-doped h-WO3
为方便比较和分析空位掺杂对纯h-WO3能带结构和态密度的影响, 先计算了纯h-WO3的能带结构和态密度如图2所示. 从图2(a)的能带结构计算结果可知, 纯h-WO3带隙较大, 导带底和价带顶分别位于Brillouin区高对称点Γ和点A处, 为间接带隙半导体. 其间接带隙计算值为0.62 eV, 经剪刀算符2.0 eV修剪后间接带隙值为2.62 eV. 由图2纯h-WO3的总态密度可知, 价带和价带顶态密度则主要由O-2p组成, 导带和导带底的态密度主要是W-5d态构成. 从分态密度可知, 纯h-WO3的价带和导带都主要由局域化的O-2p和W-5d轨道电子构成并发生杂化, 表明O原子与W原子之间共价键比较明显, 这一特性与文献的计算结果一致. 图 2 纯h-WO3的能带结构和态密度: (a)能带结构; (b)总态密度; (c) W的分态密度; (d) O1的态密度; (e) O2的分态密度 Figure2. Energy band structure and DOS of pure h-WO3: (a) Energy band structure; (b) TDOS of h-WO3; (c) PDOS of W; (d) PDOS of O1; (e) PDOS of O2
33.3.2.Tl0.33WO3能带结构和态密度分析 -->
3.3.2.Tl0.33WO3能带结构和态密度分析
Tl空位掺杂h-WO3能带结构和态密度如图3所示. 对比图3与图2的分态密度可知, Tl0.33WO3价带主要由O-2p、W-5d和Tl-6s态组成, 导带主要W-5d和Tl-6p态组成, 尤为重要的是W-5d越过费米能级EF进入价带, 价带顶和导带底均由W-5d态构成. 这表明Tl掺杂h-WO3主要扮演着捐献电子的角色. 从图3(a)可知, 价带顶和导带底的位置没有改变; 但价带整体下移, 导带底越过费米能级EF形成简并态, 并且导带和价带之间仍存在一定的间隙, 这表明Tl空位掺杂构成的Tl0.33WO3晶体仍保持n型电导率. h-WO3掺杂前后费米能级的变化表明晶体从半导体向导体转变, 这必将导致材料的光学性质的改变[36,37]. 后文中的光学性质的计算结果将进一步印证这一结论. 图 3 Tl掺杂h-WO3(Tl0.33WO3)能带结构和态密度: (a)能带结构; (b)总态密度; (c) Tl的分态密度; (d) W的分态密度; (e) O1的态密度; (f) O2的分态密度 Figure3. Energy band structure and DOS of Tl0.33WO3: (a) Energy band structure; (b) TDOS of Tl0.33WO3; (c) PDOS of Tl; (d) PDOS of W; (d) PDOS of O1; (e) PDOS of O2