1.School of Nuclear Science and Technology, University of South China, Hengyang 421001, China 2.Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China 3.Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China 4.School of Electrical Engineering, University of South China, Hengyang 421001, China
Abstract:Rotation and its shear can reduce the magnetohydrodynamic instabilities and enhance the confinement. The LHCD has been proposed as a possible means of rotation driving on a future fusion reactor. Exploring the mechanisms of LHCD rotation driving on the current tokamaks can provide important reference for future reactors. On EAST, it was previously shown that 2.45 GHz LHCD can drive plasma toroidal rotation and the change of edge plasma rotation leads the co-current core rotation to increase. At higher frequency, 4.6 GHz lower hybrid wave can more effectively drive co-current plasma toroidal rotation. On EAST, at the lower current, the effects of different LHCD power on plasma toroidal rotation are analyzed. Higher power LHCD has a better driving efficiency. The effect of safety factor (q) profile on toroidal rotation is also presented. The LHCD can change the profile of safety factor due to current drive. It is found that when the power exceeds 1.4MW, the q profile remains unchanged and the rotation changes only very slightly with LHCD power, suggesting that the current profile is closely related to rotation. In order to further analyze the dynamic process of plasma toroidal rotation driven by lower hybrid current drive on EAST, the toroidal momentum transport due to LHCD is deduced by using the modulated LHCD power injection. Based on the momentum balance equation, the toroidal momentum diffusion coefficient (χφ) and the toroidal momentum pinch coefficient (Vpinch) are obtained by the method of separation of variables and Fourier analysis for the region where the external momentum source can be ignored. It is found that the momentum diffusion coefficient (χφ) and momentum pinch coefficient (Vpinch) tend to increase from the core to the outer region. This is consistent with the characteristic that the toroidal rotation velocity first changes in the outer region and then propagates to the core when the toroidal rotation is driven by LHCD. Keywords:lower hybrid current drive/ toroidal rotation velocity/ safety factor/ toroidal momentum transport
全文HTML
--> --> --> -->
3.1.欧姆加热下LHCD驱动等离子体同向旋转变化的实验情况
在EAST上LHCD驱动等离子体旋转实验主要是在欧姆加热的条件下进行的, LHCD驱动等离子体旋转的效果为同电流方向驱动. 图1为欧姆加热条件下的LHCD驱动等离子体旋转实验(#70938)的主要参数随时间变化的波形图, 其中等离子体电流$ I_{\rm p}\sim 400 $ kA、低杂波功率约为1.4 MW (调制注入模式), 弦平均电子密度$ n_{\rm e0} \sim 2.7 \times 10^{19}\rm~m^{–3} $. 从图1可以看到随着低杂波功率的调制注入, 环电压、储能、芯部电子温度、芯部环向速度变化等参数出现了明显的周期性变化, 芯部环向速度变化幅度为~30 km/s, 表明低杂波对等离子体环向旋转有显著的驱动能力. 随着低杂波注入的调制变化, 芯部电子温度出现明显的调制变化, 而芯部离子温度没有出现明显的调制变化, 说明低杂波注入驱动的是等离子体中的电子, 因此旋转变化也应该和电子关系更大, 因为等离子体电流和电子温度等参数与低杂波驱动有很强的的相关性. 图 1 典型参数随时间变化的波形图 (#70938) (a) 等离子体电流 (黑色), 低杂波功率 (蓝色); (b) 环电压 (黑色)和内感 (蓝色); (c) 芯部弦平均电子密度; (d) 储能; (e) 芯部电子温度 (黑色)和芯部离子温度 (红色); (f) 芯部环向速度变化 Figure1. Waveforms of typical parameters of an LHCD shot (#70938) on EAST: (a) Plasma current (black) and LHCD power)(blue); (b) loop voltage (black) and internal inductance (blue); (c) central line averaged electron density; (d) stored energy; (e) central ion (red) and electron (black) temperature; (f) the change of core toroidal rotation velocity.
为了进一步分析低杂波对等离子体旋转的影响, 实验中保持其他参数基本不变的前提下, 研究了不同低杂波驱动功率对等离子体环向旋转变化影响. 如图2所示, 在 $ I_{\rm p}\!\sim\! 400~{\rm kA},~n_{\rm e0} \!\sim\! 2.5 \!\times\! 10^{19}\rm~m^{–3} $时, 扫描不同低杂波功率, 环向旋转效果都是同电流方向驱动. 通过对低杂波注入后引起旋转变化的时间尺度分析, LHCD功率为1.4 MW时, 等离子体旋转经过约200 ms重新达到平衡, LHCD功率为1.0 MW时, 等离子体旋转经过约250 ms重新达到平衡, LHCD功率为0.6 MW时, 等离子体旋转经过约350 ms重新达到平衡, 低杂波功率越高等离子体重新达到平衡的时间越短, 对等离子体的驱动效果越明显. 如图3所示, 为芯部环向旋转速度变化与低杂波功率关系图, 芯部环向速度增量随低杂波驱动功率的增加而增加, 呈线性增长趋势, 这与之前其他装置上的结果一致, 符合Rice定标规律[17], 表明低杂波驱动旋转主要从影响电子的分布进行[3]. 图 2 不同低杂波功率下典型参数随时间变化的波形图 (a) 等离子体电流; (b) 芯部弦平均电子密度; (c) 低杂波功率; (d) 芯部环向旋转速度变化 Figure2. Waveforms of typical parameters at different LHCD power levels: (a) plasma current; (b) central line averaged electron density; (c) LHCD power; (d) the change of core toroidal rotation velocity.
图 3 低杂波功率与芯部环向旋转速度变化关系 Figure3. The relationship between the change of core toroidal rotation velocity and LHCD power.
研究发现旋转变化的趋势在功率超过1.4 MW后变缓, 这可能与不同功率的低杂波驱动等离子体旋转的安全因子剖面变化相对应, 如图4所示, 为不同功率下的由激光偏振干涉仪(polarimeter-intferometer, POINT)[18]测量得到q剖面, 在低杂波功率增加时, q值增加, 当功率增加到一定值之后就没有明显变化了, 这很可能和低杂波功率的电流驱动效率有关. 低杂波电流驱动可以有效地改变电流密度分布, 但在等离子体电流较小, 且低杂波功率较小时, q分布虽然随低杂波驱动功率增加而增加, 但其剖面改变较小, 且芯部安全因子(q0)仍然小于1, 但低杂波对等离子体环向旋转的效果为同电流方向驱动, 与C-Mod[3]的情况不一致. 图 4 不同低杂波驱动功率下安全因子剖面 Figure4. Profiles of safety factor at different LHCD powers.
其中$ m_{\rm i}, n_{\rm i}, M, S $和Vt分别为离子质量、粒子密度、环向动量的径向通量、环向动量源和环向旋转速度. 如图5(c)所示, 可以用正弦函数对环向速度进行拟合, 则环向速度Vt的扰动展开形式为 图 5 典型参数随时间变化的波形图 (a) 电子温度; (b) 离子温度; (c) 环向旋转速度对调制束的响应; (d) LHCD功率(黑色)和芯部弦平均电子密度(蓝色) Figure5. Waveforms of typical parameters: (a) Electron temperature; (b) ion temperature; (c) toroidal rotation velocity; (d) LHCD power (black) and central line averaged electron density (blue).