Abstract:When the working frequency of vacuum electronic device reaches the terahertz frequency, the ohmic loss has a significant impact on the vacuum electronic device. To study the effect of the ohmic loss on the working characteristic of the vacuum electronic terahertz devices, this paper implements the frequency-dependent surface impedance boundary condition (SIBC) in the 3 dimensional particle in cell code UNIPIC-3D. Conformal mesh is adopted in the code to overcome the staircase error in traditional particle in cell method. By using the surface impedance boundary, we eliminate the need to study the field inside the lossy dielectric objects which require extremely small grid cells for numerical stability. In comparison with constant parameter SIBC, the dispersive SIBC is applicable over a very large frequency bandwidth and over a large range of conductivities. The correctness of the implementation is verified by simulating the lossy resonant cavity and circular waveguide, the simulated power loss is comparable with the theoretical predication. High power vacuum electronic devices of terahertz regime are attracting extensive interests due to their potential applications in science and technologies. The impulse-wave relativistic surface wave oscillator (SWO) and low-voltage continuous-wave planar grating backward wave oscillator (BWO) both made of copper are numerically studied by using UNIPIC-3D and dispersive surface impedance boundary condition. Numerical results show that the strongest field is very close to the slow wave structure where the beam-wave interaction occurs and that terahertz wave generates both in these two devices. The distributed wall loss has a considerable effect on the devices: the output power has a significant decrease and the startup time becomes longer, but the working frequencies of the two devices keep unchanged. To improve the efficiency of relativistic SWO, a resonant reflector is proposed between the diode and the slow wave structure. Numerical results show that the working frequency of the device with a resonant reflector keeps unchanged as the original one, but the output power increases to 60 MW from 41 MW of the original one when the ohmic loss is considered. Keywords:surface impedance boundary/ Ohmic loss/ particle in cell/ terahertz device/ surface wave oscillator/ BWO
表1圆波导中模拟Poynting通量与理论解的对比 Table1.Comparison of simulated and analytic Poynting flux in a circular waveguide.
-->
4.1.相对论表面波振荡器的模拟
太赫兹表面波振荡器是一种圆周对称契轮科夫器件, 通过采用慢波结构将器件中电磁波的相速度降到接近电子的群速度并与电子发生束波互作用而产生太赫兹波, 具有结构紧凑、功率高、适合重复频率工作等优点[6]. Wang等[6]研制了相对论太赫兹表面波振荡器, 包含无箔二极管、环形阴极、慢波结构、输出结构和外加引导磁场. 除了图中的准直段的反射腔外, 其结构如图4所示, 采用矩形慢波结构, 慢波段内半径为3 mm, p = 0.32 mm, h = 0.1 mm, d = 0.18 mm, 周期数为30. 380 kV的高电压波从左端口注入, 当阴极表面电场达到发射阈值后, 电子会自洽的向外发射, 发射电流约为2.2 kA, 引导磁场幅值为5.25 T. 在无耗和有耗边界条件下, PIC模拟得到的器件输出功率分别为91 MW和41 MW, 工作频率为0.377 THz, 电磁波模式为TM01模[30]. 图 4 表面波振荡器示意图 Figure4. Schematic of a surface wave oscillator.
为了提高返波管高功率微波的产生效率, 在电子枪和慢波结构之间加入反射腔[31-35], 如图4所示. 反射腔可以对电子束进行预调制, 并对器件中的返波进行反射, 增强慢波结构中电磁波的强度, 从而提高波束互作用效率. 本文采用加入损耗边界的UNIPIC-3D软件模拟了如图4所示的带反射腔的太赫兹表面波振荡器的工作过程. 波导输出端采用CPML吸收边界进行截断[29]. 模拟中对器件壁面分别采用理想导体边界和非理想导体边界, 有耗边界采用铜的电导率σ = 5.8 × 107 S/m. 图5是模拟得到SWO稳定起振后某时刻轴向电场云图, 可以看出器件中的波沿着慢波结构表面传输, 电场最强的地方集中在慢波结构附近, 这也是表面波振荡器工作的特点, 因而这类器件的欧姆损耗会更加明显. 从电场空间分布来看, 经过约两个慢波结构后电场的相位发生一次变化, 即器件工作在π模附近[30]. 模拟得到的粒子空间分布如图4所示, 可以看出由阴极发射的电子注在管内同谐波发生互作用, 受到良好的密度调制, 群聚效果明显. 图 5 SWO内z方向电场分布云图 Figure5. Contour of the Ez inside the SWO.
图6和图7分别为采用理想导体边界和有耗边界时靠近慢波结构的观测点处径向电场的时间变化曲线, 对其进行傅里叶变换可以看出器件的工作频率为0.337 THz, 电场的频谱纯度很高, 没有其他高次模出现, 表明在加入反射腔后器件的工作频率没有发生变化. 另外从图7可以看出加入表面损耗后, 电场时间变化曲线的包络曲线波动变大, 可能是因为考虑表面损耗后器件内能量分布发生了变化, 影响了器件的起振过程和后续的稳定输出. 图 6 理想导体SWO中 (a)电场时间波形; 电场频谱(b) Figure6. Time history of the electric field (a) inside the SWO with PEC and its spectrum (b).
图 7 有损耗铜材料SWO中 (a)电场时间波形; (b)电场频谱 Figure7. Time history of the electric field (a) inside the SWO with lossy copper and its spectrum (b).
图8为分别采用两种材料所得输出功率, 对比可以看出采用真实的金属材料边界后, SWO的输出功率下降非常明显, 这也解释了之前模拟得到的功率远大于实验测量功率的现象[6]. 另外可以看出采用有耗边界以后, 该器件的起振时间发生了延迟. 为了加快器件的起振, 可以采用外加太赫兹源牵引器件快速起振[36]. 图 8 SWO输出功率 Figure8. Output power from the SWO.
Xi等[10]研制了低电压带状电子注平板返波管, 如图9所示, 主要由电子枪、慢波结构、收集极和外围波导及输出波导组成. 不同于上面的大功率SWO, 该平板返波管采用5 kV的低电压热阴极电子枪, 发射电流为200 mA. 采用带状电子注能减弱空间电荷力导致的束流扩散, 而平板格栅慢波结构则易于加工[10]. 互作用段采用平板格栅慢波结构, 具体的几何参数如图中参数所示. 阴极发射面的尺寸为2.5 mm × 0.14 mm, 沿z方向加载了强度为0.9 T的引导磁场. 电子注沿+z方向传播并与慢波结构中的电磁波发生互作用. 产生的太赫兹波沿–z方向传播, 最终沿左下方输出波导输出. 图 9 平板BWO结构示意图(外围波导尺寸: 宽a = 7.2 mm, 高b = 1.8 mm; 格栅尺寸: 周期l = 0.1 mm, 宽w = 2.5 mm, 高h = 0.16 mm, 间距d = 0.058 mm; 格栅周期数140) Figure9. BWO with planar structure.(a = 7.2 mm, b = 1.8 mm; l = 0.1 mm, w = 2.5 mm, h = 0.16 mm, d = 0.058 mm)
图10给出了起振后宏粒子z方向速度随纵向坐标的分布, 可以看出电子的速度以0.136倍光速为基准上下波动, 随着电子向前运动, 电子逐渐受到速度调制和密度调制而出现群聚, 电子的能量也逐渐降低, 表征着电子能量逐渐向太赫兹波能量发生转化. 图 10 BWO中电子相空间图 Figure10. Phase space of electrons in the BWO
图11(a)为采用理想导体边界时输出波导内诊断到的z方向电场时间波形. 图11(b)为考虑表面损耗时模拟得到相同位置处的结果, 选择铜材料. 可以看出, 输出电磁波的频率为0.34 THz, 没有其他模式. 采用理想导体边界所得监测点处电场的峰值约为采用有耗边界时的1.6倍, 欧姆损耗对器件中电场的幅值影响非常大. 图 11 BWO中电场波形 (a)无损耗; (b)有损耗 Figure11. Time history of electric field in the BWO with PEC (a) and lossy copper (b).