1.Department of Material Science and Engineer, Xiangtan University, Xiangtan 411105, China 2.Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, Fifth Institute of Electronics of the Ministry of Industry and Information Technology, Guangzhou 510610, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No.11875229) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No.ZHD201803)
Received Date:16 January 2020
Accepted Date:23 February 2020
Published Online:05 May 2020
Abstract:Ferroelectric field effect transistor (FeFET) is a promising memory cell for space application. The FeFET can achieve non-destructive reading, and has the advantages of simple structure and high integration. Ferroelectric thin film’s size effect, retention performance and radiation resistance of ferroelectric thin films directly determine the performances of FeFET devices. The HfO2 is widely used as a dielectric in complementary metal oxide semiconductor (CMOS) device and can solve the common integration problems for ferroelectric materials due to its CMOS compatibility. When the HfO2-based FeFETs are applied to aerospace electronics, the effects of various radiation particles need to be considered. The HfO2-based FeFET memory is still in the experimental stage, and there are no products of HfO2-based FeFET chips available from the market, so it is difficult to carry out experimental research on its single particle effect In the case of lacking the finished products of HfO2-based FeFET devices, using the device-hybrid simulation method to study the HfO2-based FeFET single-particle effect is a necessary and feasible content for the research on HfO2-based FeFET single-particle effects. In this paper, the device-circuit simulation method is used to build a read-write circuit of HfO2-based ferroelectric field-effect transistor. The change of read and write data after a single particle is incident on a ferroelectric field effect transistor memory cell and a sensitive node of a peripheral sense amplifier is studied, and the internal mechanism of read and write data fluctuation is analyzed. The results show that when high-energy particles enter into the drain of the ferroelectric memory cell in the read-write circuit, the memory cells in the “0” state generate electron-hole pairs, which accumulate inside the device, causing the gate electric field strength and ferroelectricity to increase, and the memory cell in the “1” state has a large fluctuation in the output transient pulse voltage signal due to the charge injection of the source, indicating that the ferroelectric memory cell has a good performance against particle flipping; when high-energy particles enter into the amplifier’s sensitive node, a collection current is generated, causing the amplifier in the state of reading “0” to turn on, and the output data to fluctuate. Owing to the fluctuation time being only 0.4 ns, the data does not have single-particle flipping energy under normal readout, and the HfO2-based FeFET read-write circuit has excellent resistance to single particles. When two beams of high-energy particles act on the drain of a ferroelectric memory cell successively in a time interval of 0.5 ns, the output data signal fluctuates more than in the case of a single beam of high-energy particles, and the final output voltage difference in the reading and writing “1” state becomes smaller. Keywords:ferroelectric field effect transistor/ single-event transient/ single event upset
当栅极电压为负电压, 铁电极化从上指向下为负方向, 在沟道处有大量的累积电荷, 在漏源之间加小电压读出数据“0”; 当栅极电压为正电压, 铁电极化从下指向上为正方向, 沟道处出现了反型层, 在漏源之间加一个小电压读出数据“1”, HfO2基FeFET写入“1”和“0”状态时器件内部的电荷密度分布如图4所示. 输入2 × 2铁电存储阵列读写电路的控制时序如图3所示, 得到了HfO2基FeFET读写电路的灵敏放大器输出信号变化、铁电存储单元cell 1输出信号变化和铁电存储单元cell 1极化强度变化, 如图5所示. 通过输出电压的大小来定义存储状态“1”和“0”, 经过灵敏放大器进行数据读出. 当输入正栅压时, 铁电极化为正, 输出高电压为存储数据“1”; 当输入负栅压时铁电极化为负, 输出低电压为存储数据“0”. 图 4 HfO2基FeFET写入时器件内部的电荷密度分布 (a)写入“1”器件内部电荷分布; (b)写入“0”时器件内部电荷分布 Figure4. Charge density distribution inside the device when HfO2-based FeFET is written: (a) The internal charge distribution of the device is written with “1”; (b) the internal charge distribution of the device is written with “0”.
图 5 铁电存储阵列的读写信号 (a)灵敏放大器输出信号变化; (b) cell 1输出信号变化; (c) cell 1极化强度变化 Figure5. Reading and writing of ferroelectric memory arrays: (a) Changes in the output signal of the sense amplifier; (b) changes in the output signal of cell 1; (c) changes in the polarization of cell 1.