1.School of Sciences, Lanzhou University of Technology, Lanzhou 730050, China 2.School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 3.School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract:Porous graphene (PG), a kind of graphene-related material with nanopores in the graphene plane, exhibits novel properties different from those of pristine graphene, leading to its potential applications in many fields. Owing to periodic nanopores existing naturally in the two-dimensional layer, PG can be used as an ideal candidate for hydrogen storage material. High hydrogen storage capacity of Li-decorated PG has been investigated theoretically, but the effect of temperature on the stability of the H2 adsorbed on Li-PG has been not discussed yet. In this paper, by using the first-principles method, the hydrogen storage capacity on alkaline metal atoms (Li, Na, K) decorated porous graphene is investigated in depth with generalized gradient approximation, and the effect of the temperature on the stability of the hydrogen adsorption system is elucidated by the ab initio molecular-dynamics simulation. The results show that the most favorable adsorption sites of Li, Na and K are the hollow center sites of the C hexagon, and four alkaline metal atoms can be adsorbed stably on both sides of PG unit cell without clustering. Alkaline metal adatoms adsorbed on PG become positively charged by transferring charge to PG and adsorbed H2 molecules, and three H2 molecules can be adsorbed around each alkaline metal atom. By analyzing the Mulliken atomic populations, charge density differences and density of states of H2 adsorbed on Li-PG system, we find that the H2 molecules are adsorbed on alkaline metal atoms decorated graphene complex by attractive interaction between positively charged alkaline metal adatoms and negatively charged H and weak van der Waals interaction. Twelve H2 molecules are adsorbed on both sides of PG decorated with alkaline metal atoms. The average adsorption energy of H2 adsorbed on Li-PG, Na-PG and K-PG are –0.246, –0.129 and –0.056 eV/H2, respectively. It is obvious that the hydrogen adsorption capacity of Li-PG system is strongest, and the hydrogen adsorption capacity of K-PG is weakest, thus K-PG structure is not suitable for hydrogen storage. Furthermore, by the ab initio molecular-dynamic simulation, in which the NVT ensemble is selected but the external pressure is not adopted, the effect of temperature on the stability of H2 molecules adsorbed on Li-PG system is elucidated. The result shows that the configuration of Li-PG is very stable, H2 molecules are stably adsorbed around the Li atoms at low temperature, and some H2 molecules start to be desorbed from the Li atoms with the increase of temperature. At 200 K, H2 molecules begin to move away from Li atoms, and two H2 molecules escape from the binding of the Li atoms at 250 K. At 300 K, nine H2 molecules can be stably absorbed on both sides of Li-PG, and the gravimetric hydrogen storage capacity can reach up to 9.25 wt.%, which is much higher than the the US Department of Energy target value of 5.5 wt.% for the year 2017. With the increase of temperature, more adsorbed H2 molecules are desorbed, seven H2 molecules can be desorbed at 400 K, and all H2 molecules are completely desorbed in a temperature range of 600–700 K. Keywords:porous graphene/ hydrogen storage/ first-principles/ molecular-dynamic
表1H2吸附能(ΔEad)、平均吸附能($\Delta {\bar E_{{\rm{ad}}}}$)及Li所带的电荷(q) Table1.Adsorption energies (ΔEad) and average adsorption energies ($\Delta {\bar E_{{\rm{ad}}}}$)of H2 molecules, and the charge of Li (q).
图 2 Li-PG吸附氢气分子弛豫后的几何结构(红色字体表示H—H键长) Figure2. Optimized geometry structure of the Li-PG with H2 molecules adsorption. Red digits represent the corresponding bond length of H—H.
位于碳环中心(h1构型)和碳氢环中心(h2构型)的Na原子吸附能相近, 因此考虑这两种结构吸附H2分子的情况. 图3和图S5 (见补充材料(online))分别描述了h1和h2构型吸附H2弛豫后的几何结构. 在表2中, ΔEh1是h1构型H2分子的吸附能, ΔEh2是h2构型H2分子的吸附能. 通过分析吸附能, 发现随着H2数目增加, h2构型吸附H2的能力明显降低. 对于h1构型, 3个H2可以稳定地吸附在Na周围. 因而, h1构型是吸附H2分子的最佳结构. 分析Mulliken原子布居发现, Na-PG结构吸附H2之前, Na带+0.99 e的电荷, C均带负电荷. 体系吸附1个H2后, Na带+1.32 e的电荷, H2的两H原子带–0.07 e和–0.15 e的电荷, 表明Na阳离子把0.33 e个电荷转移给H2和C原子. 带负电的C和正电的Na之间形成静电场, H2被极化使得H—H键长由0.753 ?变为0.767 ?. 图 3 Na-PG吸附H2分子优化后的几何结构图(红色数字表示H—H键长) Figure3. Optimized geometry structure of the Na-PG with H2 molecules adsorption. Red digits represent the corresponding bond length of H—H
n(H2)
1
2
3
ΔEh1/eV
–0.202
–0.262
–0.215
ΔEh2/eV
–0.234
–0.117
–0.166
表2Na-PG吸附H2分子的吸附能 Table2.Adsorption energies of H2 molecules on Na-PG.
图4是K-PG吸附1到3个H2优化后的几何结构. 体系吸附的第1个H2垂直于PG平面, 键长为0.761 ?, 吸附能仅有–0.120 eV表明H2被较弱吸附. 当体系吸附第2个H2后, K原子返回碳环中心, 第2个H2吸附能为–0.176 eV, 两H2分子的H—H键长为0.763 ?, 均垂直于PG平面. 第3个H2的吸附能仅有–0.110 eV, 3个H2垂直于PG平面且位于H原子之上. 随着H2分子数目的增多, H2分子的吸附能逐渐减小, K周围较弱地吸附3个H2分子. 图 4 K-PG结构吸附H2分子优化后的几何结构图(红色数字表示H—H键长) Figure4. Optimized geometry structure of the K-PG with H2 molecules. Red digits represent the corresponding bond length of H—H
33.2.2.氢分子的吸附性能 -->
3.2.2.氢分子的吸附性能
图5和图S6 (见补充材料(online))描述了Li-PG, Na-PG, K-PG吸附1个H2的分波态密度图. 氢分子的σ轨道和Li原子2s轨道间没有发生轨道耦合现象(见图5(a)). 从图5(b)看出, H2分子σ轨道出现在费米能级下约–9.1 eV处, Na原子的3s或2p轨道和氢分子的σ轨道均没有发生轨道耦合现象. K原子的s和p轨道与H2分子的σ轨道也无明显的轨道耦合现象(见图S6). 这说明H2分子吸附在碱金属修饰的PG体系上不是通过Kubas相互作用机制, H2分子主要通过极化机制以及弱范德瓦耳斯相互作用吸附在碱金属修饰的PG上. 图 5 (a) Li-PG和(b) Na-PG结构吸附一个H2分子的分波态密度图 Figure5. Partial density of states (PDOS) of a H2 molecule on (a) Li-PG and (b) Na-PG.
为了进一步了解氢的吸附机理, 计算分析了H2吸附体系的差分电荷密度. H2-Li-PG的差分电荷密度如图6及图S7 (见补充材料(online))所示, 黄色和蓝色区域代表电荷的减少和聚集. H2分子两侧分别出现了电荷聚集和减少(图6(a)及图S7), 表明H2分子被极化, 带正电的Li和带负电的C之间的静电场使氢分子极化, H2分子通过极化机制被吸附到Li-PG体系上[4,18]. 从图6(b)观察到围绕在Li周围的3个H2两边均有电荷聚集和减少, 但远离Li原子的第4个氢分子两侧无电荷分布, 表明Li原子和第4个H2分子间无电荷转移, 这与Mulliken原子布居(见表1)分析一致, 进一步表明Li原子周围可以稳定吸附3个H2分子. 以上分析与利用氢分子吸附能判断的结论一致, 说明氢分子的吸附能比平均吸附更能准确地判断吸附H2分子的数目. Seenithurai等[31]在研究Li修饰3 × 3石墨烯吸附H2分子时, LDA泛函计算已高估吸附能, 而作者仅通过平均吸附能判断每个Li原子周围可以吸附5个H2分子, 这一结论不准确. 图7描述了Na-PG及K-PG吸附1个H2分子差分电荷密度图, 可以看出H2分子通过极化机制被吸附到体系上, 但Na (或K)与H2分子间聚集的电荷很少, 表明Na (或K)和H2分子的相互作用较弱. 图 6 Li-PG吸附H2分子的差分电荷密度图(电荷密度等值面是0.01 e / ?3) (a) n = 1; (b) n = 4 Figure6. Charge density differences of n H2 adsorbed on Li-PG system for (a) n = 1 and (b) n = 4. The isovalue is taken to be 0.01 e/?3
图 7 Na-PG (a)及K-PG (b)吸附1个H2的差分电荷密度图(电荷密度等值面是0.01 e/?3) Figure7. Charge density differences of a H2 adsorbed on Na-PG (a) and K-PG (b) system. The isovalue is taken to be 0.01 e/?3.