1.Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China 2.Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract:Thermal rectification refers to the phenomenon that heat fluxes or equivalent thermal conductivities are different under the same temperature difference when temperature gradient directions are different. The nature of the thermal rectification is that the structure has different effective thermal conductivities in different directions. Most of previous studies focused on thermal rectification of temperature-dependent thermal conductivity materials or variable cross section area structure, and the effect of thermal contact resistance at the interface was investigated very rarely. In the present paper we present the analytical and finite element numerical solution of temperature field and thermal rectification ratios of a composite structure with variable cross section area and thermal conductivity under different interface thermal contact resistances. The prescribed temperature boundary condition is introduced by penalty method, and the temperature jump condition at the interface is implemented by the definition of thermal contact resistance directly. The nonlinear heat conduction problem caused by temperature-dependent thermal conductivity and interface thermal contact resistance is then solved with a direct iteration scheme. Comparisons between experimental results and the present theoretical and numerical results show the feasibility of the proposed model. Then parameter investigations are also conducted to reveal the effect of some key geometric and material parameters. Numerical results show that thermal contact resistance plays an important role in the temperature field and thermal rectification ratio of the two-segment thermal rectifier. With the increase of the length ratio, thermal ratification ratio increases first and decreases then, and the optimal length ratio varies with both thermal contact resistance and cross-section radius change rate of the two segments. In general, the existence of thermal contact resistance can increase the total thermal resistance of the rectifier and magnify the distinction of the heat flux in forward and reverse cases. However, if the thermal contact resistance is too large, this distinction will decrease and correspondingly the thermal rectification ratio becomes low. With the increase of the boundary temperature difference, thermal rectification ratio increases due to the effect of temperature-dependent thermal conductivity. In the present study, we propose a theoretical and numerical approach to designing and optimizing the length ratio, cross-section radius change rate, thermal conductivity, boundary temperature difference and interface thermal contact resistance to obtain the maximal thermal rectification ratio of a bi-segment thermal rectifier, as well as the manipulation of thermal flux in engineering applications. Keywords:thermal rectification/ composite structure/ thermal contact resistance
全文HTML
--> --> --> -->
2.1.问题描述
经典热整流器件由两种热导率温度依赖特性相反的材料组成. 热量正向流动时, 左边材料处于高温状态, 右边材料处于低温状态, 结构的等效热导率较高, 从而容易产生热量流动. 反之, 热量逆向流动时, 左边材料处于低温状态, 右边材料处于高温状态, 结构的等效热导率比较低, 热量流动困难, 从而实现热整流效应[30]. 本文模型以此类器件为研究对象, 如图1所示. 该热整流器由两段一维变截面结构组成, 其长度分别为L1和L2, 横截面积分别为A1(x1)和A2(x2), 材料的热导率分别为k1(T)和k2(T), 两杆接触界面为非完好接触, 存在接触热阻Rc, 器件的左右两端分别给定恒温边界条件. 图 1 变截面变热导率一维组合热整流器模型 (a) 热量自左向右正向流动; (b) 热量自右向左反向流动 Figure1. Schematic of the one-dimensional composite thermal rectifier model with variable cross section area and thermal conductivity: (a) Forward heat flows from left to right; (b) reverse heat flows from right to left.
对于材料热导率和横截面积简单变化的情形, 结构的温度场可以给出理论解(参见附录), 本节给出基于本文有限元解和理论解及实验值[22]对模型温度场及热流量的比较, 以验证有限元解的可靠性. 理论解及各个参数的定义可以参见附录, 实验中采用的参数取值如下: L1 = L2 = 9.5 mm, 横截面积常数分别为 A01 = 3.06 mm2, AM1 = 2.08, A02 = 1.99 mm2, AM2 = 1.66, 所用材料为LaCoO3和La0.7Sr0.3CoO3, 其热导率常数k01 = 1.02 W · m–1 · K–1, k02 = 0.455 W · m–1 · K–1, 参考温度T0 = 60 K, 根据附录的理论解和2.2节的有限元解可以分别得到结构温度场及热整流系数的理论结果和数值结果, 在给定高温和低温边界条件分别为TH = 100 K和TC = 40 K时热整流器温度场的理论解、有限元解与实验结果的对比如图3所示. 低温端TC = 40 K不变, 高温端的温度边界条件分别取70, 80 , 90 和100 K时, 不同接触热阻条件下结构热量和热整流系数的理论解、有限元解与实验结果[22]的对比如图4所示. 图 3 热整流器的温度场分布对比 (Reverse与Forward分别代表LaCoO3和La0.7Sr0.3CoO3材料位于高温端的情况) Figure3. Comparisons of temperature distribution of the thermal rectifier (Reverse and Forward denote the case of that LaCoO3 and La0.7Sr0.3CoO3 materials locate in high-temperature side respectively).
图 4 不同温差下热整流器的响应 (a) 热量; (b) 热整流系数 Figure4. Response of the thermal rectifier with different temperature differences: (a) Heat flux; (b) thermal rectification ratio.
从图3和图4可以看出, 不考虑接触热阻时本文给出的理论解和有限元解完全吻合, 同时与文献中的实验结果[22]也吻合得很好. 考虑接触热阻的影响时, 热阻越大结构温度场、热流和热整流系数的计算结果与实验结果误差越大. 这表明, 实际结构的界面接触热阻确实很小, 不考虑界面热阻是合理的. 热整流系数的计算值与实验值有一定的误差, 随着结构两端温差的增加, 计算结果与实验结果的误差逐渐减小. 实验中通过杆件端部4个热电偶获得热整流器的温度场分布, 参考文献[22]中每个杆件的长度为9.5 mm, 但由于高低温热源位置处热电偶与端部位置还有一定距离, 实际高低温热源与热电偶测点位置距离略小于9.5 mm. 本算例表明本文提出的有限元仿真方法在分析变截面变热导率热整流模型时是可行的. 23.2.参数影响研究 -->