Abstract:In the past decade, most of researchers have been devoted to broadening the bandwidth of absorber. There are few researches on how to achieve wide-angle absorbing materials by detailed theoretical analysis and design guidance. It is still difficult to design wide-angle absorbers. In this paper, based on the equivalent medium theory, the reflectivity of the metamaterial absorber with a single-layered medium backed with metal reflector is analyzed in detail. Starting from the basic electromagnetic theory, the reflection coefficient of the absorber under transverse electric(TE) plane wave and transverse magnetic (TM) plan wave irradiation are derived. And the equivalent electromagnetic parameters of realizing the wide-angle absorbing effect are analyzed, which provide a theoretical basis for designing the wide-angle metamaterial absorber. The theoretical analysis results show that the equivalent electromagnetic parameters required for the medium to achieve low-profile and wide-angle absorbing effect are mainly related to the equivalent permeability and have little relationship with the equivalent permittivity. Moreover, the equivalent electromagnetic parameter value for achieving ultra-wide-angle absorber under TE wave and that under TM wave irradiation are different from each other. In other words, the anisotropic metamaterial with appropriate equivalent permeability has the potential to be used to design the ultra-wide-angle absorbers which are not sensitive to TE waves nor TM waves. In addition, in order to find the theoretically achievable widest absorbing angle value under TE wave and TM wave irradiation, the reflection coefficients at all angles must be less than or equal to –10 dB to obtain the relationship among the equivalent electromagnetic parameters, thickness and angle. The results show that the theoretically achievable widest absorbing angle value is 86.56° under TE wave and TM wave irradiation. The designer can choose the corresponding thickness and permeability from the data obtained from the analysis according to the design requirements. The narrow-band absorbers have limited applications. Therefore, in this paper we also theoretically analyze the values of the equivalent electromagnetic parameters for ahcieving wide-band and wide-angle absorbing materials, and make theoretical verification. The results show that the wide-band and wide-angle absorber can be achieved theoretically, while the equivalent electromagnetic parameters of the medium vary with frequency as some special curves indicate. Although this method is based on the equivalent medium theory and has no direct relationship with the actual structure, it does provide theoretical guidance for designing the wide-angle absorbers. Keywords:equivalent medium theory/ wide angle absorbers/ broadband and wide-angle
此外, TM波照射下${\varepsilon _{r1 z}}$对反射系数也有影响. 将${\mu _{r1 y}}$取值为1–j10, 厚度为$d = {1 / {150}}\lambda $. 保持磁导率和厚度不变, 当改变${\varepsilon _{r1 z}}$时, 反射系数与入射角度的关系如图5所示. 随着${\varepsilon _{r1 z}}$逐渐增大, 吸收角度逐渐变宽; 当${\varepsilon _{r1 z}}$增大到1时, 与前面分析一致, 出现最佳吸收角度, 吸收角度达到最宽; 当${\varepsilon _{r1 z}}$大于1时, 吸收角度基本不再发生变化, 只是最佳吸收角度处的反射系数变小, 对其他角度的吸收率影响也较小. 从图中可以看出, 当${\varepsilon _{r1 z}}$取值为1时, 最佳角度处反射系数最小. 当${\varepsilon _{r1 z}}$取值为于0时, 反射系数为–1. 故而在分析磁导率和厚度对反射曲线的影响时都将${\varepsilon _{r1 z}}$设置为1. 图 5 TM波照射下超材料的反射系数随入射角度和z方向介电常数的关系 Figure5. The relationship among the reflection coefficient of metamaterials and incident angle and the dielectric constant of z direction under TM wave irradiation.
从前面的分析结果来看, 影响TE波和TM波照射时宽角度吸收情况的等效电磁参数主要是${\mu _{r1 x}}$, ${\mu _{r1 y}}$的虚部以及厚度d, 其余参数的对宽角度吸收情况影响较小, 故而后续分析中其余等效电磁参数均设置为1, 例如${\varepsilon _{r1 z}} = 1$, ${\mu _{r1 x}} = 1 - {\rm{j}}\mu'' _{r1 x}$, ${\mu _{r1 y}} = 1 - {\rm{j}}\mu''_{r1 y}$. 为了找出TE波和TM波照射下理论上能实现宽角度吸收效果的极限角度值, 首先设定所有角度反射系数小于或等于–10 dB, 分析反射系数中磁导率的虚部和厚度的取值对吸收角度的影响. 在保证所有角度反射系数小于–10 dB的情况下, 此时可以得到一组数据图, 如图6所示, 横轴为磁导率的虚部, 纵轴为厚度, 颜色柱为最大的吸收角度值. TE波照射下, 在d为0.012λ、磁导率${\mu _{r1 x}} = 1 - {\rm{j}}54$时, 最大吸收角度为86.56°. 图中没有标出具体数值, 但实际上编写的Matlab程序可以为我们提供实现宽角度吸波的厚度和磁导率虚部的具体数值. 最大吸收角度的相关参数值会因为取值的采样率的问题而有所变化, 但是最宽吸收角度值变化微小. 从图6可以看出最大吸收角度与d和磁导率的取值关系趋势, 大致呈现一种反比例函数的关系. 图 6 超材料吸波体的吸收角度与介质厚度和${\mu _{r1 x}}$虚部的关系 Figure6. The relationship among the absorbing angle of the metamaterial absorber and the substrate thickness and imaginary part of ${\mu _{r1 x}}$.
同样地, TM波照射下, 在d为0.003λ、磁导率${\mu _{r1 y}} = 1 - {\rm{j}}13$时, 最大吸收角度为86.56°. 从该结果中可以看出TE波和TM波照射下所能实现的最宽吸收角度相同, 都能实现接近掠入射的最佳吸收效果. 从理论分析的结果来看, 如果要实现具有极宽角度的吸波材料, 可以使用各向异性的结构实现相对应的大角度的磁导率. 这与我们常规思维略有不同, 此前几乎所有的超材料吸波体为了解决极化敏感度问题, 其设计的结构都是轴对称的, 但是他们并未考虑大角度入射的问题. 但是, 这并不是说只有各向异性结构才能实现宽角度吸波, 从图6和图7中可以看出, 当x和y方向上的磁导率相同时在某些厚度下也能实现宽角度吸波. 图 7 超材料吸波体吸收角度与介质厚度和${\mu _{r1 y}}$虚部的关系 Figure7. The relationship among the absorbing angle of the metamaterial absorber and the substrate thickness and imaginary part of ${\mu _{r1 y}}$.
前面的分析是在窄频带的情况下进行的, 那么宽带宽角度吸波材料的磁导率应该满足什么关系, 也是一个值得研究的问题. 实际上, 在设计具体的吸波材料的时候, 介质实际厚度在物理上是固定值, 其与频率没有关系, 但电尺寸厚度与频率关系为$d = ({{{d'} \cdot f}})/{c}$, 其中${d'}$是介质实际厚度, 可见电尺寸厚度与频率成正比, 即频率越高电尺寸厚度越厚. 图6和图7的纵轴其实可以替换成频率, 如此就可以推测, 当介质的磁导率虚部随频率变化的曲线落在两幅图中的黄色区域, 理论上就可以实现宽带宽角度吸波. 为了检验该结论, 从前面得到的数据中, 提取一条落在黄色区域的磁导率虚部与频率的关系曲线. 这里设定介质的实际厚度为3 mm, 即$d = 0.01 f$, 频率f单位为GHz, 当TE波照射时, 选取磁导率虚部和频率关系为$f \!=\! - 0.1\mu'' _{r1 x} $+3.7, 所得到的反射系数与频率的关系为如图8所示, 图中红蓝青绿黑曲线分别代表0°, 20°, 40°, 60°, 80°入射角度下的反射系数, 在0.8—2.1 GHz频段内反射系数都在–10 dB以下. 当TM波照射时, 选取的磁导率虚部和频率的关系式为$f = - 0.1\mu'' _{r1 y} + 1.7$, 所得到的反射系数与频率的关系如图9所示, 图中红蓝青绿黑曲线分别代表0°, 20°, 40°, 60°, 80°入射角度下的反射系数, 在0.3—1.4 GHz频段内反射系数都在–10 dB以下. 由此可见, 满足特定情况的磁性色散材料是可以实现宽带宽角吸波效果的. 而且TE波和TM波满足的色散曲线可以不同. 如果要在同频段内实现宽带宽角吸波并且对TE波和TM波不敏感, 所需要的色散关系曲线也可以由编写的Matlab程序获得的数据中得到. 此外, 需要特别说明的是介质色散关系曲线只要落在图7和图8的黄色区域内理论上就能实现宽带宽角度吸波, 并不仅限于前面所选取的线性关系. 图 8 TE波 (a) 实现宽带化${\mu _{r1 x}}$虚部和d的关系; (b) 带地板色散介质的反射系数随入射角度和频率的变化 Figure8. TE wave: (a) The relationship between imaginary part of ${\mu _{r1 x}}$ and d for achieving broadband; (b) reflection properties of dispersive media backed with ground vary with incidence angle and frequency.
图 9 TM波 (a) 实现宽带化${\mu _{r1 y}}$虚部和d的关系; (b)带地板色散介质的反射性能随入射角度和频率的变化 Figure9. TM wave: (a) The relationship between imaginary part of ${\mu _{r1 y}}$ and d for achieving broadband; (b) reflection properties of dispersive media backed with ground vary with angle of incidence and frequency.