Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Flexible Display Material and Technology Co-Innovation Center of Hubei, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
Abstract:Charge carrier recombination and energy disorder in organic solar cells both have a profound impact on the open-circuit voltage of the device. In this paper, both traditional fullerene-(PC71BM) and nonfullerene-(O-IDTBR) based solar cells were fabricated using the same electron donor material (PTB7-Th). The room-temperature current density–voltage characteristics showed that despite the values of their power conversion efficiencies were very close, there was a huge open circuit voltage (Voc) difference between the PC71BM and O-IDTBR devices. To understand the sources of the Voc variation, characterization techniques such as impedance spectra, low temperature electrical characterization method, transient photovoltage, and electroluminescent spectra were carried out. Temperature-dependent Voc of the devices were measured in a large temperature range between 120 K and 300 K. The charge transfer state energy (ECT) of the fullerene and the nonfullerene cells were determined to be 1.13 V and 1.34 V, respectively. Furthermore, the Mott-Schottky equation was applied to analyze the capacitance- voltage curves of the fabricated devices. Results showed that the built-in voltage (Vbi) of the O-IDTBR based cell (1.38 V) was much higher than that of the PC71BM cell (1.15 V). By analyzing the above data, it was easy to speculate that charge carrier recombination loss in the PC71BM device was more serious since the net electric field was relatively weak. Impedance spectra were used to measure the charge carrier recombination process in both devices. Fitting results through the equivalent circuit stated clearly that values of the recombination resistance in the O-IDTBR device were much higher in the test range, indicating that the charge carrier was less easy to recombine in the nonfullerene device. This speculation could be verified by the transient photovoltage (TPV) measurements since the carrier lifetime in the O-IDTBR device was much longer. The excited states in the devices were investigated by the electroluminescence spectra. Since the full width at half maximum (FWHM) of the O-IDTBR emission spectrum was narrower, the excited state energy distribution in the O-IDTBR device was more uniform. Based on the above analyses, the higher Voc in the O-IDTBR device was attributed to the mild charge carrier recombination and low energy disorder. Keywords:polymer solar cells/ charge carrier recombination/ energy disorder
3.实验结果与讨论图1(a)所示为本研究所涉及的两种电子受体材料PC71BM与O-IDTBR的化学结构式及其相应的能级结构. 为了便于分析, 电子给体材料PTB7-Th的能级情况也画在图中. 从图可知, PC71BM和O-IDTBR在分子结构上有着巨大的区别, 前者属于类球形结构, 而后者具有链状特征. 这种分子层面的结构特点决定了用其制备的聚合物光伏器件可能表现出不同的物理化学性质. 一般而言, 聚合物太阳电池的开路电压由电子给体材料的最高占据分子轨道(highest occupied molecular orbitals, HOMO)能级与电子受体材料的最低未占据分子轨道(lowest unoccupied molecular orbitals, LUMO)能级之差决定[21]. 由于两者的LUMO能级相同, 并考虑到与它们配合使用的电子给体材料均为PTB7-Th, 在不考虑能量损失的情况下PTB7-Th:PC71BM和PTB7-Th:O-IDTBR器件的开路电压应该相同. 图 1 (a)电子受体材料PC71BM与O-IDTBR的化学结构式及光活性层材料的能级示意图; (b)基于PC71BM和O-IDTBR的电流密度-电压曲线 Figure1. (a) Chemical structures of PC71BM、O-IDTBR and their energy level diagrams; (b) Current density-Voltage curves of the PC71BM and O-IDTBR based devices.
图1(b)展示的是实验测得的基于PC71BM和O-IDTBR作为电子受体的聚合物太阳电池的典型电流密度-电压曲线. 在100 mW/cm2光强的照射下, PC71BM器件的短路电流密度(Jsc)、填充因子(FF)、开路电压(Voc)以及能量转换效率(PCE)分别为17.35 mA/cm2, 65.30%, 0.79 V及8.95%. 与之不同的是, O-IDTBR器件在同样条件下的Jsc, FF, Voc及PCE分别为14.24 mA/cm2, 61.40%, 1.01 V及8.83%. 从以上参数可以看出, 两者的能量转换效率接近, 但是短路电流密度和开路电压却有着明显的区别. 由于本文的重点在于讨论器件的开路电压, 造成短路电流密度大小不一的原因不展开详细讨论(主要原因在于两者活性层在短波长处的吸收不同, 详见附加信息S1). 前文已提及, 因PC71BM和O-IDTBR两种受体材料具有相同的LUMO能级, 在给体材料相同的情况下基于以上两种受体的光伏器件应该具有相同的开路电压. 然而, 实验测得的PC71BM器件的Voc仅为0.79 V, 而O-IDTBR器件的Voc则高达1.01 V. 为了弄清造成这一巨大差别的原因, 我们首先测量了两种典型器件在不同温度下的开路电压, 结果如图2(a)所示. 从图中可以看出, 随着温度从300 K降低到120 K, 两种器件的开路电压均出现较大增长, 表明器件中载流子的复合过程受到了抑制[22]. 将Voc-Temperature曲线进行线性拟合并外推至0 K可以得到电荷转移态能量(ECT), 即开路电压的最大值. 根据曲线在纵轴的截距, PC71BM和O-IDTBR器件的开路电压最大值分别为1.13和1.34 V. 此结果表明, 300 K下PC71BM和O-IDTBR器件相比于0 K条件下开路电压分别损失了0.34和0.33 V, 非常接近. 更进一步地, 我们利用Mott- Schottky关系[23]计算了两种器件中的内建电场: 图 2 (a) 两种器件的开路电压随温度变化的曲线; (b)两种器件的Mott-Schottky曲线 Figure2. (a) Voc-Temperature curves of the devices using different electron acceptors; (b) Mott- Schottky curves for the devices.
式中C和V分别为器件测试得到的电容和施加的直流电压, Vbi为器件的内建电场, q为电子电量, N为掺杂浓度, ε0和εr分别为真空介电常数和活性层的相对介电常数. 如图2(b)所示, 通过线性区的拟合, 得到PC71BM和O-IDTBR电池的内建电场分别为1.15和1.38 V. 由于内建电场可以用来表征器件在特定电压下的实际电场, 内建电场数值越大, 器件的开路电压就越大, 这主要是因为内建电场大的器件中有效电场越强, 载流子更容易在电场的作用下被电极抽取[23], 最终导致载流子复合损失程度降低. 交流阻抗技术是研究聚合物太阳电池载流子复合过程的一种有效手段[24,25]. 图3(a)为从两种器件的交流阻抗谱(详见附加信息S2)提取出的器件的复合电阻随光照强度的变化曲线. 图3(a)中的插图为拟合电路, 其中Rs为器件的串联电阻, Rtrans为载流子的传输电阻, Cg为器件的几何电容, Cc和Rrec分别为器件的化学电容和复合电阻. 从图中可以看出, 器件在低光强下均具有较大的复合电阻, 原因在于低光强照射下器件中的光生载流子数目较少, 降低了具有相反电荷载流子相遇复合损失的概率. 在测量光强范围内, O-IDTBR器件的复合电阻值普遍高于PC71BM器件, 暗示了PC71BM器件中载流子复合程度更为严重. 这一推断可以进一步被瞬态光电压实验证实. 如图3(b)所示, 在瞬态光电压衰减曲线中, PC71BM更快地从电压最大值衰减到0, 表明该器件中的光生载流子具有较短的寿命, 也就意味着更多电荷通过复合损失了. 图 3 (a) 器件的复合电阻随光照强度的变化曲线, 插图: 阻抗谱的等效拟合电路; (b)器件的瞬态光电压曲线 Figure3. (a) Recombination resistance as a function of the light intensities, inset: Equivalent circuit of the measured impedance spectrum; (b) transient photovoltage curves of the devices.
为进一步研究两种不同器件的区别, 我们对其进行了电致发光光谱测试. 图4(a)和图4(b)分别为PC71BM器件和O-IDTBR器件在30—110 mA下的电致发光光谱. 从图中可以看出, 两种器件在近红外区都出现了明显的激发态发光峰. 对于PC71BM器件, 随着注入电流的逐渐增加, 其发光峰向着短波长方向(高能量方向)逐渐移动. 与之明显不同的是, 基于O-IDTBR的器件的发光峰尽管也有位移, 但可以忽略不计. 另一方面, PC71BM器件的发光峰宽于O-IDTBR器件的发光峰, 说明前者的激发态能级分布要宽于后者. 考虑到电致发光峰向短波方向移动是由于器件内的能量无序造成的[16]. 我们认为O-IDTBR器件相比于PC71BM器件具有更高的能量有序性. 图 4 (a) PC71BM与 (b) O-IDTBR器件在不同注入电流下的电致发光光谱 Figure4. Electroluminescence of the (a) PC71BM and (b) O-IDTBR based devices with various injection current.
根据以上分析, PC71BM器件中的荧光发射来源于其分布较宽的激发态电子的辐射跃迁, 而O-IDTBR器件因光谱宽度较窄, 且随电流变化较小, 其激发态能量分布相对均一, 如图5(a)所示. 由此可以知道, 在PC71BM器件中, 受体材料的LUMO能级无序度较高(其高斯分布宽度σn1较大). 相比之下, O-IDTBR的LUMO能级分布更窄(σn2较小), 导致O-IDTBR器件的开路电压Voc2大于PC71BM器件的开路电压Voc1, 如图5(b)所示. 图 5 (a) PC71BM器件与O-IDTBR器件的电致荧光发射过程示意图; (b)能量无序对开路电压的影响示意图 Figure5. (a) Illustration of the fluorescence emission process in the polymer solar cells; (b) illustration of the impact of energy disorder on the open-circuit voltage.