Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11874271)
Received Date:02 September 2019
Accepted Date:15 October 2019
Available Online:01 November 2019
Published Online:20 November 2019
Abstract:When 2D materials with different lattice constants or lattice rotation angles are stacked together, a periodic moiré pattern will appear. Such moiré superlattice introduces a new two dimensional periodic potential, which can greatly change the physical properties of the original systems. Recent experimental studies of moiré superlattices formed by graphene on graphene and graphene on hexagonal boron nitride have revealed very rich strong correlation effects and topological effects due to novel states in superlattice minibands. It has been shown that flat bands in graphene-based moiré superlattice systems can host both topological states and strongly correlated states, which can be controlled by an external electric field. In bilayer graphene, ABC stacked trilayer graphene and twisted bilayer-bilayer graphene, the number of valence and conduction bands near the Dirac point and even the band topology and bandwidth can be changed by varying the stacking angle between graphene layers or the applied bias voltage. Moreover, the competition between kinetic energy and coulomb interaction depends on the bandwidth and the external electric field, and at the so-called magic angle mott insulator states and superconductivity were observed. Twisted bilayer-bilayer graphene has also been predicted to show similar intriguing properties, including electrically tunable strongly correlated insulators, superconductivity and many rich topological states. In graphene-based moiré systems, the combination of topological states and strong correlations is expected to lead to a broad range of novel phenomena that are not achievable in other material systems. Therefore, graphene moiré systems is likely to bring substantial progress to the study of topological materials. In this paper, we review theoretical and experimental investigations of the topological properties of graphene moiré superlattices, including topological domain wall states in bilayer graphene and topological effects in twisted bilayer graphene, ABC trilayer graphene and twisted double bilayer graphene. The origins of topological properties of these systems are discussed as well as topological phenomena observed in various experiments. Finally, recent near-field optical studies of the band structure and novel topological properties of graphene moiré superlattices are discussed. Keywords:graphene/ moiré superlattice/ topology/ near-field optics
全文HTML
--> --> --> -->
2.1.石墨烯拓扑性质的来源
单层石墨烯具有蜂窝晶格结构[28] (图1(a))和非常独特的电子特性[29-31]. 作为一种零带隙半导体, 它的导带与价带在六角形布里渊区的相邻两角处(即K和–K点)呈锥形接触, 对应于简并且不等价的能谷, 同时具有空间反演对称性(inversion symmetry)与时间反演对称性. 石墨烯的拓扑性质从它出现开始就受到人们的广泛关注, 包括对其量子霍尔效应的测量[32,33]、量子自旋霍尔效应[34]和量子反常霍尔效应的预言[35]、能谷拓扑性质的研究等. 图 1 (a) 石墨烯、单层过渡金属硫族化合物(TMDs)等材料的二维蜂窝晶格; (b)当单层石墨烯与h-BN基底产生相互作用, 空间反演对称性就会被破坏, 单层TMDs不具有空间反演对称性结构, 在双层石墨烯和双层TMDs中反演对称性可以通过施加z方向的电场打开或关闭; (c) 反演对称性破缺的狄拉克体系在能谷处打开能隙, 箭头表示能谷光学跃迁, 圆形箭头表示不同的圆偏振光[28] Figure1. (a) 2D hexagonal lattice, representing graphene, monolayer transition metal dichalcogenides (TMDs), etc; (b) In monolayer graphene, inversion symmetry is broken when monolayer graphene interacts with h-BN substrate. The monolayer TMDs have structures that lack inversion symmetry. Inversion symmetry in bilayer graphene and TMDs can be switched on/off by an electric field applied in the z-direction; (c) An energy gap is opened in Dirac systems with broken inversion symmetry. The arrows indicate interband transitions at different valleys, and the circular arrows represent different circularly polarized light[28].
机械剥离的双层石墨烯天然存在AB和BA堆叠, 当一块样品中同时存在两种堆叠时, 就会在AB-BA堆叠的交界处产生畴壁. 在外加偏置电压下双层石墨烯在狄拉克点打开能隙并获得非零的能谷陈数, 堆叠的次序会导致能谷陈数发生改变, 畴壁两侧AB和BA两种不同堆叠区域在某一特定能谷的能谷陈数符号相反, 所以畴壁上存在无能隙的一维拓扑电子态[51,61-64]. 这种拓扑手性模形成一维导电通道[51,63] (图2(a)), 电流的传播方向由偏置电压Vi的符号和能谷指数决定, 图2(b)和图2(c)分别为层间正偏置电压和负偏置电压的情况. 图 2 (a) 双层石墨烯中剪切型畴壁的示意图与BA、鞍点(Saddle point, SP)和AB堆叠的能带结构. 红色和粉色的箭头表示束缚在畴壁上的手性拓扑模; (b), (c) 在正(负)层间偏压${V_{\rm{i}}}$作用下K谷畴壁的能带结构[61] Figure2. (a) Schematic representation of a shear domain wall in bilayer graphene and the band structure of BA, Saddle point (SP), and AB stacking. Red and magenta wavy arrows represent chiral topological modes bound to the domain wall; (b), (c) Band structure of the wall under a positive (negative) interlayer bias ${V_{\rm{i}}}$ for the K valley[61].
最近在转角双层石墨烯的魔角[10,11]附近观察到了绝缘态和超导态, 类莫特(Mott)绝缘体的行为和超导现象的产生意味着该体系具有强关联的物理行为, 转角双层石墨烯中转角产生的长周期莫尔条纹重构了电子能带结构, 费米能级附近产生非常平坦的小能带(图3), 电子态密度出现峰值, 库仑相互作用的影响变得很重要, 此时库仑排斥作用远大于电子动能, 导致出现每个莫尔点阵都只有一个电子占据的Mott绝缘状态[66,67]. Mott绝缘体在强关联物理中起着核心作用, 掺杂的Mott绝缘体常被哈伯德模型所描述[68], 而哈伯德模型会引起其他相关的现象, 如反常磁性, 甚至高温超导性[69]. 这些实验发现大大打破了人们对石墨烯体系的预期, 引起了对层状转角莫尔体系的广泛研究. 图 3 (a)转角双层石墨烯莫尔超晶格示意图[10]; (b)小布里渊区示意图, ${K_{\rm{s}}}$, ${K'_{\rm{s}}}$和${\varGamma _{\rm{s}}}$代表小布里渊区中的点[10]; (c)与h-BN对齐的转角双层石墨烯中小能带处的能带结构, ${\theta _{\rm{M}}} = 1.20^\circ $[8] Figure3. (a) The Moiré superlattice as seen in twisted bilayer graphene[10]; (b) schematic representation of the mini Brillouin zone. ${K_{\rm{s}}}$, ${K'_{\rm{s}}}$ and ${\varGamma _{\rm{s}}}$ denote points in the mini Brillouin zone[10]; (c) band structure for valley + of the twisted bilayer graphene aligned with h-BN in the mini Brillouin zone ${\theta _{\rm{M}}} = 1.20^\circ $[8].
ABC堆叠三层石墨烯与六方氮化硼衬底(ABC TG/h-BN)对齐的体系(图4(a))中利用莫尔超晶格实现了一种可以调节的Mott绝缘体, 其库仑相互作用和动能之间的竞争关系可以通过原位调节发生变化[13,14], 该体系最有趣也是最重要的一点是它可能包含的拓扑和强关联性质. 图 4 (a) ABC TLG/h-BN的莫尔超晶格示意图, 为了图像清晰, 只显示了顶部h-BN和底部石墨烯最上层的原子[13]; (b) ABC堆叠三层石墨烯/h-BN体系示意图, 垂直电场使顶部和底部石墨烯层之间的电子能量差为$\Delta V$[12]; (c), (d)分别为没有和有垂直电场时的小布里渊区处的能带图; (d)垂直电场在顶部和底部石墨烯层之间产生20 mev的电位差, 导致了一个带宽减小的孤立的空穴型小能带, 增强了强关联作用, 从而生成了可调节的Mott绝缘体态[13] Figure4. (a) Schematic of ABC TLG/h-BN Moiré superlattice. Only atoms of the top h-BN layer and the bottom graphene layer are shown for clarity[13]; (b) illustration of the ABC stacked trilayer graphene/h-BN system. A vertical electric field introduces an energy difference $\varDelta V$ for electrons between the top and the bottom graphene layer[12]; (c), (d) energy dispersion of the two electron and hole minibands without and with a vertical electrical field, respectively. The vertical electrical field in (d) generates a potential difference of 20 meV between the top and bottom graphene layers, leading to an isolated hole minibands with strongly suppressed bandwidth. The reduced electronic bandwidth relative to the Coulomb interaction enhances the electron correlation, and leads to the tunable Mott insulator states[13].
这里U是质量项, $A = {{{v^n}}}/{{\gamma _1^{n - 1}}}$, $v \approx {10^6}$m/s是石墨烯狄拉克点的电子速度, ${\gamma _1} \approx 380\;{\rm{meV}}$是层间耦合参数(图4(b)). n代表层数, 对于n = 1的单层石墨烯, U是两个子晶格之间的能量差. 对于n = 2的AB堆叠双层石墨烯和n = 3的ABC堆叠三层石墨烯, U为顶层与底层的能量差. 而在双层石墨烯和三层石墨烯中, 垂直电场可以很容易地控制U [13]. (3)式本质与Xiao等[36]和Yao等[37]的模型相同, 具有内禀的贝里曲率, 在施加垂直电场时可以打开能隙, 使价带和导带具有非零的陈数. ABC堆叠三层石墨烯的电子具有三次方的能量色散和非常大的有效质量[72-76] (即能带非常平), 因此ABC TLG/h-BN异质结构中的莫尔超晶格[38,46-48,77-79]可以产生非常平坦的小能带, 这有利于强关联现象的出现. 位移场D为上下石墨烯层间的电子提供了一个能量差$\Delta V$, 如图4(b)所示, 当施加偏压时, 孤立的价带会与导带分离(图4(c)和图4(d)), 价带变得更加平坦. 通过不同的偏压, 还可以使孤立的价带具有非零的陈数, 使其具有可调节的能带拓扑结构[7,14]. 实验上已经观测到了ABC TLG/h-BN异质结构中的Mott态[13], 每个填充的小能带在一个莫尔原胞中包含4个电子(自旋和能谷简并), Mott绝缘态出现在1/4和1/2填充处, 分别对应于每个位置的一个电子和两个电子. Mott能隙可以通过垂直电场调制, 同时电子掺杂可以通过门电压调节来填充从一个Mott绝缘态到另一个Mott绝缘态的能带(图5(a)). 理论预言D < 0时空穴小能带为拓扑非平庸态(即陈数C ≠ 0), D > 0时为拓扑平庸态(C = 0)[14]. 最近的实验在ABC TLG/h-BN中观测到霍尔电阻在h/2e2 量子化, 对应于C =2 的陈绝缘体态(图5(a)), 这个拓扑态表现出强铁磁性(图5(b))[14]. 图 5 ABC TLG/h-BN, 纵向电阻率图和不同磁场下的霍尔电阻率图 (a) T = 1.5 K时以${V_{\rm{t}}}$和${V_{\rm{b}}}$为函数的纵向电阻率图, 箭头分别表示掺杂(n)和电位移场(D)的方向. 理论预言D < 0时空穴小能带为拓扑非平庸态(即陈数C ≠ 0), D > 0时为拓扑平庸态(C = 0); (b)在1/4填充和D = –0.5 V/nm时不同的温度下的霍尔电阻${\rho _{yx}}$, 显示出清晰的反常霍尔效应(AH)的信号并伴随着很强的磁滞回线. 在温度T = 0.06 K时, 横向电阻$\rho _{yx}^{{\rm{AH}}} = 8\;{\rm{k}}\Omega $和矫顽场${H_{\rm{c}}} = 30\;{\rm{mT}}$. 插图: 矫顽场和AH信号与温度的函数[14] Figure5. ABC TLG/h-BN, color plot of the longitudinal resistivity and Magnetic field dependent ${\rho _{yx}}$: (a) Longitudinal resistivity as a function of ${V_{\rm{t}}}$ and ${V_{\rm{b}}}$ at T = 1.5 K. The arrows show the direction of changing doping (n) and displacement field (D), respectively. It was predicted theoretically that the hole miniband is topological (Chern number C ≠ 0) for D < 0 and trivial (C = 0) for D > 0; (b) magnetic field dependent ${\rho _{yx}}$ at 1/4 filling and D = –0.5 V/nm at different temperatures. The Hall resistivity displays a clear AH signal with strong ferromagnetic hysteresis. At the base temperature of T = 0.06 K, the AH signal can be as high as $\rho _{yx}^{{\rm{AH}}} = 8\;{\rm{k}}\Omega $ and the coercive field is ${H_{\rm{c}}} = 30\;{\rm{mT}}$. Inset: Extracted coercive field ${H_{\rm{c}}}$ and AH signal $\rho _{yx}^{{\rm{AH}}}$ as a function of temperature[14]